SIMPLE HARMONIC MOTION EXPERIMENT

Introduction:

In this experiment you will measure the spring constant using two different methods and compare your results. Hooke’s law for a spring states that:

\[F = -kx, \quad (1) \]

where \(x \) is the displacement of the spring from equilibrium, \(F \) is the force exerted by the spring, and \(k \) is the spring constant. The negative sign just means that the restoring force is opposite in direction to the displacement.

If a spring obeys Hooke’s law, then a mass attached to it moves in a simple harmonic motion when displaced from equilibrium and released. That is,

\[x = A \cos(\omega t + \phi), \quad (2) \]

where \(A \) is the amplitude of oscillation (maximum displacement from equilibrium), \(\omega \) is the angular frequency in rad/s, and \(\phi \) is a phase angle that depends on when timing starts. \(\omega \) is related to the frequency in hertz (f) and the period (T) by \(\omega = 2\pi f = 2\pi T \). By substituting Eq. (2) into Eq. (1) and using Newton’s 2\text{nd} law of motion, it can be shown that

\[\omega = \sqrt{\frac{k}{m}}, \quad \text{and} \quad T = 2\pi \sqrt{\frac{m}{k}}. \quad (3) \]

Thus, \(k \) can be measured statically using Eq. (1) or dynamically using Eq. (3).

Equipment: vertical long rod, clamp, string, masses, mass hanger, meter stick, force sensor

Preliminary Questions:

1. Which will have a longer period of oscillation \(T \), a mass of 0.6 kg or a mass of 0.7 kg (same spring)?

2. Sketch a graph of \(x \) vs. \(t \), from Eq. 2, for the two cases \(\phi = 0 \) and \(\phi = \pi/2 \).

3. Sketch graphs of \(v \) vs. \(t \) and \(a \) vs. \(t \) for the two cases drawn in problem 2.
4. According to Eq. 2, \(x \) varies from \((-A)\) to \((+A)\). At which location(s) does the mass have its greatest speed?

(a) \(x = \pm A \) \hspace{1cm} (b) \(x = 0 \) \hspace{1cm} (c) \(0 < x < A \) \hspace{1cm} (d) same at all points.

5. At which location(s) does the mass have its greatest potential energy?

(a) \(x = \pm A \) \hspace{1cm} (b) \(x = 0 \) \hspace{1cm} (c) \(0 < x < A \) \hspace{1cm} (d) same at all points.

Procedure

PART 1

Hang a mass holder from the end of the spring and measure the displacement from this position for added masses \(m = 0.1 \text{ kg}, 0.2 \text{ kg}, \ldots, 0.5 \text{ kg} \) (or 5 values of \(m \) appropriate to your spring). Plot \(F (= mg) \) versus \(x \) and determine \(k_1 \) from the slope of the line. Submit your graph with your report.

<table>
<thead>
<tr>
<th>(m)</th>
<th>displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Value of \(k_1 = \)_______

PART 2

Hang the spring and mass holder from the force sensor. Connect the force sensor to the Pasco interface. Open the file: "SHM.ds" contained in the T:\Datastudio folder. Beginning with \(m = 0.1 \text{ kg} \), displace the mass from equilibrium and measure force versus time. Fit the data to a sine wave and determine the period \(T \) from your fit parameters. Repeat for \(m = 0.2 \text{ kg}, \ldots, 0.5 \text{ kg} \). From Eq. (3), squaring both side we obtains:

\[
T^2 = \frac{4\pi^2 m}{k_2}
\]

Now plot \(T^2 \) (on the y-axis) versus \(m \) (on the x-axis). Be sure to include the mass of the mass holder. Find the slope and determine \(k_2 \) using \(\text{slope} = (4\pi^2/k_2) \).

<table>
<thead>
<tr>
<th>(m)</th>
<th>(T)</th>
<th>(T^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\text{Slope:} \)_______
Submit a sample fit to the sine wave, your table of values for T and m, and your graph of T^2 vs. m with your report.

Value of $k_2 = ______$

Questions

1. Compare the values of k determined in parts 1 and 2. Are they in good agreement? Calculate their percentage difference

$$\frac{|k_1 - k_2|}{\frac{1}{2}(k_1 + k_2)} \times 100\% = \text{_______}$$

2. What is the meaning of the y-axis intercept in your straight line fit in part 2? From equation (3), if m is = 0 then T should be zero, but as you see from your fit it’s not, why?

3. If we did this experiment on the moon (where $g = 1.6 \text{ m/s}^2$), what effect, if anything, would this have on the two parts of this experiment?

PART 1
Effects on the measured forces F

Effects on the measured displacement x

Effect on the value k_1

PART 2
Effects on the mass m

Effects on the measured period T

Effect on the value k_2