SHOW all your works. Put the answers in a BOX
1 Two of the following change of coordinates correspond to a Lorentz transformation, identify both:
A- a boost in space
B- a translation in spacetime
C- a rotation in space
D- a rotation in spacetime
E- a translation in space.
2 Given the following components of the four-vector A :

$$
A^{\mu}=(-2,3,1,-1)
$$

Compute its components A^{μ} after the Lorentz boost $v_{x}=0.91 c$
3 Write how the following tensorial quantities transform after a Lorentz transformation. Use the appropriate Lorentz Λ matrix for each index.

$$
\begin{array}{r}
A_{\mu} \\
B^{\mu \nu} \\
C^{\mu}{ }_{\nu} \\
D^{\mu \nu}{ }_{\rho} \\
E^{\mu} D_{\mu} \\
F^{\mu} G_{\mu} H^{\rho}
\end{array}
$$

4 A vector field as components

$$
A^{i}=(-y, 2,3 x,)
$$

Find the components in the new coordinates system given by $x^{\prime}=x z, y^{\prime}=y^{2}-2 x, z^{\prime}=-x^{2} y+z$
5 Given the scalar function

$$
\phi(x)=\ln (x)+x^{2}
$$

and the change of coordinate $x^{\prime}=\ln \left(x^{3}\right)$.
5.1 Find the expression of $\phi^{\prime}\left(x^{\prime}\right)$.
5.2 Show that $\phi(x)=\phi^{\prime}\left(x^{\prime}\right)$ for the given point $x=2$.

6 Perform the explicit matrix multiplications of the component of the Lorentz matrix with its inverse to prove that $\Lambda^{-1} \Lambda=\mathbb{1}_{4 \times 4}$

8 Write down explicitly all the terms in the sums of the 2 D expression $A^{2}{ }_{1}=B_{\alpha}^{2} C_{1}{ }^{\beta} D^{\alpha}{ }_{\beta}$

