\qquad

1 Given the following components of the two Lorentz vectors A and B :

$$
A^{\mu}=(-2,0,0,1) \quad B^{\mu}=(5,0,3,4)
$$

1.1 Compute $A-5 B$
1.2 Compute $A B$
1.3 Calculate the norm of A and B and specify if it is timelike, lightlike or spacelike.

2 Given the Euclidean metric $\delta_{i j}$ in Cartesian coordinates (x, y), find its expression in the new coordinates $x^{\prime}=3 x, y^{\prime}=2 y$.

3 Find the length of the curve

$$
x(\lambda)=2 \lambda \quad y(\lambda)=-\lambda^{3} \quad 0<\lambda<1 / 2
$$

on a two dimensional space with metric

$$
\eta_{i j}=\left(\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right)
$$

You can use software to evaluate the integration.
4 A the vector field has components $A^{i}=\left(z^{2}, x,-1\right)$ and the metric tensor is:

$$
g_{i j}=\left(\begin{array}{ccc}
y & 3 x & 0 \\
3 x & z^{2} & 1 \\
0 & 1 & 2
\end{array}\right)
$$

Find at the point $P=(1,0,-2)$ the magnitude of A^{i}.
5 Given the two-dimensional Minkowski metric

$$
\eta_{i j}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Find four two-tensors $A^{\mu}, B^{\mu}, C^{\mu}, D^{\mu}$ such that each one is lightlike, has all components non-zero and points in a unique direction. Draw the tensors on a spacetime diagram.

6 Given the Euclidean metric $\delta_{i j}$ in Cartesian coordinates (x, y), find its expression in the polar coordinates (r, θ). Show your step by step calculations: find the Jacobian and use the indices sum.

