PH354 - HW4 Special Relativity 2

SHOW all your works. Put the answers in a BOX
NAME: \qquad

1 The equations of motion of a point particle is:

$$
\begin{aligned}
x^{0}(\tau) & =\alpha(\tau-1) \\
x^{1}(\tau) & =\alpha \tau^{2}
\end{aligned}
$$

find the value of τ which corresponds to $v=c$.
Hint: start by calculating the $d / d \tau$ of the two expressions above.
2 Show that $\gamma m v^{2}+\gamma^{-1} m c^{2}=\gamma m c^{2}$.
3 A particle moves along the x -axis with 3 -velocity (in natural units):

$$
\frac{d x}{d t}=\frac{k t}{\sqrt{1+k^{2} t^{2}}} \quad k=\mathrm{constant}
$$

3.1 Calculate the components of the four velocity.
3.2 Give the expression of the proper time elapsed from $t_{i}=0$ to $t_{f}=t$.
(Hint: integrate $d \tau=\gamma^{-1} d t$, you can use software for the integration).
3.3 Does the particle 3 -speed ever exceed the speed of light?

4 An electron is moving with kinetic energy of 1.264 Mev. What is its speed? (unit of c)
5 A particle has relativistic momentum $817 \mathrm{MeV} / \mathrm{c}$ and energy of 1125 MeV for observer O.
5.1 What is its rest energy for O ? (MeV)
5.2 Observer O^{\prime} in a different frame measures the momentum of the same particle to be $953 \mathrm{Mev} / \mathrm{c}$. What is the corresponding energy of the particle for $O^{\prime} ?(\mathrm{MeV})$

6 Electrons are accelerated to high speed by a two stages machine. The first stage accelerates the electron from rest to $0.99 c$. The second from $0.99 c$ to $0.999 c$.
6.1 How much energy is needed to accelerate the electron in the first stage? (MeV)
6.2 for the second? (MeV)
6.3 for the electron to reach the speed c ?

7 A particle of mass M decays at rest into two particles of equal mass m. Find the expression for the speed of each particle as a function of c, M, m.

8 (extra credit). Observer O measures a particle of mass m moving in the x direction to have speed v, energy E and momentum p. An observer O^{\prime}, moving at speed v_{T} in the x direction, measure v^{\prime}, E^{\prime}, and p^{\prime}.
8.1 Find E^{\prime}, p^{\prime} expressed in terms of m, v_{T}, and v.
8.2 Prove, using the expressions found in 8.1, that $p^{\prime \mu} p_{\mu}^{\prime}$ is an invariant quantity.

