PH354 - HW5 - Riemann geometry

SHOW all your works. Put the answers in a BOX NAME:

1 Prove that the partial derivative of a tensor $\partial_{\mu}A^{\nu}$ is not a tensor under a general change of coordinates.

2 The tangent vector A on S^2 has components $A^{\theta} = \sin(\theta), A^{\varphi} = \sin^2(\theta)$. Calculate all four components of it its covariant derivative.

3 Show that the equator $(\theta = \frac{\pi}{2})$ and that any meridian $(\varphi = \text{constant})$ are the geodesics of S^2 .

4 The invariant line element for the two-sphere S^2 of radius R in spherical coordinate is given by:

$$ds^2 = R^2 d\theta^2 + R^2 \sin^2 \theta d\phi^2$$

7.1 Find the components of $g^{\mu\nu}$.

7.2 Use the metric above to prove that the area of half surface of the sphere is $2\pi R^2$.

5 Show the calculation to obtain all components of the connection $\Gamma^i{}_{jk}$ for the metric $ds^2 = d\theta^2 + \sin^2(\theta)d\phi^2$ on the unit sphere S^2 (radius R = 1).

6 Which of the following 2D manifolds has non-zero intrinsic curvature?

Torus, Sphere, Cylinder, Mobius strip, Klein bottle, Projective plane, Two-holed torus, Hyperbolic plane.