PH354 - HW6 General Relativity

1 The equivalence principle implies two of the following:

A- equivalence between a free falling frame and inertial frame of reference.

B- equivalence between mass and energy.

C- equivalence between staying on a surface's planet and accelerating frame in empty space.

D- equivalence between a free falling frame and an accelerating frame in empty space.

E- equivalence between staying on a surface's planet and an inertial frame of reference.

2 The following tensorial equations holds in special relativity, write the corresponding equations in the presence of gravity. α, β are constants.

 $\begin{aligned} \alpha \partial_{\mu} B^{\mu\nu} &= \beta \eta_{\rho\sigma} C^{\rho\sigma\nu} \\ C_{\mu\nu} B^{\nu} &= \alpha \partial_{\mu} f(x) \\ \partial^{\mu} \partial_{\mu} A^{\nu} &= \eta^{\nu\rho} K_{\rho} \end{aligned}$

3 Do a dimensional analysis of both sides of the Einstein equation: what are the units of it? (do not assume natural unit).

4 The only independent non-zero component of the Riemann tensor for S^2 is $R_{\theta\phi\theta\phi} = r^2 \sin^2\theta$ where r is the radius of S^2 . Starting from the Riemann tensor derive $R = 2/r^2$.

5 Prove that the Einstein equation in vacuum $(T_{\mu\nu} = 0)$ can be written as $R_{\mu\nu} = 0$.

6 Give an example of each of the following cases:

6.1 Metric = $\eta_{\mu\nu}$, connection coefficients = 0, Riemann tensor $\neq 0$.

6.2 Ricci tensor and Ricci scalar both = 0, metric $\neq \eta_{\mu\nu}$.

6.3 Connection coefficients $\neq 0$, Riemann tensor = 0.