Basic notions of abstract algebra

A magma is a set $\left\{g_{1}, g_{2}, ..\right\}$ together with a composition law \circ such that $\forall g$

$$
g_{1} \circ g_{2}=g_{3} \in \text { set } \quad \text { closure }
$$

A semigroup is a magma such that $\forall g$

$$
g_{1} \circ\left(g_{2} \circ g_{3}\right)=\left(g_{1} \circ g_{2}\right) \circ g_{3} \quad \text { associativity }
$$

A monoid is a semigroup such that $\forall g$

$$
\exists e: e \circ g=g \circ e=g \quad e \text { unit element }
$$

A group G is a monoid such that $\forall g$

$$
\exists g^{-1}: g^{-1} \circ g=g \circ g^{-1}=e \quad g^{-1} \text { inverse element }
$$

A ring R is set together with two composition laws + and • (addition and multiplication respectively) such that the set is group under addition and is a monoid under multiplication ${ }^{1}$. The composition + is abelian while \cdot is not required to be abelian and \cdot is distributive with respect to + .

Example: The set of integers \mathbb{Z} is a ring. The number 0 is the identity under addition and the number 1 is the identity under multiplication. There is no notion of inverse element with respect to the multiplication.

A field K is a set together with two composition laws + and • (addition and multiplication respectively) such the set is an abelian group under + and is an abelian group under • for all the nonzero elements, and \cdot is distributive with respect to + .

Example: The set of rational numbers \mathbb{Q} is a field. Others fields are the set of real numbers \mathbb{R} and the set of complex numbers \mathbb{C}.

A linear vector space V over a field K consists of two sets:
1 - a field K
2 - an abelian group V with elements $u, v \ldots$ called vectors and a composition law ${ }^{2}+: V \times V \rightarrow V$ such that $\forall \alpha, \beta \in K$ and $\forall u, v \in V \exists$ a map $K \cdot V \rightarrow V$ called the scalar multiplication such that

$$
\begin{array}{ll}
\alpha \cdot(\beta \cdot u)=(\alpha \cdot \beta) \cdot u & \text { associativity } \\
\alpha \cdot(u+v)=\alpha \cdot u+\alpha \cdot v & \text { distributivity } \\
(\alpha+\beta) \cdot u=\alpha \cdot u+\beta \cdot u & \text { distributivity }
\end{array}
$$

The unit element with respect to + in V is called the zero-vector.
Example: The set of arrows pointing in a direction \vec{v} satisfy the conditions above and therefore are called vectors.

In the abstract sense, any element of a set which satisfies the conditions of a linear vector space is a vector: ordinary functions are vectors, matrices are

[^0]vectors as well as tensors and linear connections.

A R-module satisfies the same conditions of a vector space but instead of being over a field K it is over a ring R.

An algebra is a vector space together with a composition law \square which is a magma. Additional proprieties satisfied by \square give different kinds of algebra.

If $\forall u \exists e \in V:$	$e \square u=u \square e$	$=u$
If $\forall u, v, w$	$u \square(v \square w)$	$=(u \square v) \square w$

e, the unit of A, in general is different from the zero-vector.
Example: $V=$ set of functions $f: \mathcal{M} \rightarrow \mathbb{R}, K=\mathbb{R}$ and $\square=$ ordinary multiplication of functions, $e=f(x)=1$. All of the above proprieties are satisfied.

Example: $V=$ set of the matrices $A, K=\mathbb{R}$ and $\square=$ matrix multiplication, $e=\mathbb{1}$. The algebra is unital and associative but not commutative.

Example: Lie Algebra. $V=\mathbb{R}^{n}, K=\mathbb{R}$ or \mathbb{C} and $\square=[$, $]$ the Lie Bracket which satisfies:

$$
\begin{array}{lr}
{[u, v]=-[v, u]} & \text { anticommutativity } \\
{[\alpha u+\beta v, w]=\alpha[u, v]+\beta[v, w]} & \text { bilinearity } \\
{[u,[v, w]]+[v,[w, u]]+[w,[u, v]]=0} & \text { Jacoby }
\end{array}
$$

Lie algebra are not unital, not associative and not cummutative.
Example: $V=\mathbb{R}^{3}, K=\mathbb{R}, \square=$ the cross product of ordinary vectors \vec{v}. It's a Lie algebra since the cross product satisfies the conditions of the Lie bracket. With e_{i} a basis of V^{3}, the cross product reads $e_{i} \times e_{j}=\epsilon_{i j k} e_{k}$ where $\epsilon_{i j k}$ is the Levi-Civita symbol. It is the algebra $S O(3)$. There is no unit since $\nexists \vec{e}: \vec{v} \times \vec{e}=\vec{v}$.

Example: Poisson algebra. $V=$ set of smooth functions $f \in C^{\infty}(\mathcal{M}), K=\mathbb{R}$ or \mathbb{C} and with two \square compositions. The first $\square=$ ordinary multiplication of functions, which makes the Poisson algebra commutative and associative. The second $\square=$ Poisson bracket which is a Lie Bracket satisfying the additional condition:

$$
[u, v w]=[u, v] w+v[u, w] \quad \text { Leibniz. }
$$

Notice how the symbol $v w$ only makes sense because the first composition is defined.

[^0]: ${ }^{1}$ Some authors define a ring as a set where the multiplication is a semigroup. In this case, if the identity element exists the ring is called a unital ring.
 ${ }^{2}$ this composition law + in V is indicated with the same symbol of the composition in the field K. These two compositions are distinct.

