Basic notions of abstract algebra

A magma is a set $\{g_1, g_2, ..\}$ together with a composition law \circ such that $\forall g$

 $g_1 \circ g_2 = g_3 \in \text{set}$ closure

A semigroup is a magma such that $\forall g$

$$g_1 \circ (g_2 \circ g_3) = (g_1 \circ g_2) \circ g_3$$
 associativity

A monoid is a semigroup such that $\forall q$

$$\exists \ e : e \circ g = g \circ e = g \qquad e \ unit \ element$$

A group G is a monoid such that $\forall g$

 $\exists g^{-1}: g^{-1} \circ g = g \circ g^{-1} = e \qquad \qquad g^{-1} \text{ inverse element}$

A ring R is set together with two composition laws + and \cdot (addition and multiplication respectively) such that the set is group under addition and is a monoid under multiplication¹. The composition + is abelian while \cdot is not required to be abelian and \cdot is distributive with respect to +.

Example: The set of integers \mathbb{Z} is a ring. The number 0 is the identity under addition and the number 1 is the identity under multiplication. There is no notion of inverse element with respect to the multiplication.

A field K is a set together with two composition laws + and \cdot (addition and multiplication respectively) such the set is an abelian group under + and is an abelian group under \cdot for all the nonzero elements, and \cdot is distributive with respect to +.

Example: The set of rational numbers \mathbb{Q} is a field. Others fields are the set of real numbers \mathbb{R} and the set of complex numbers \mathbb{C} .

A linear vector space V over a field K consists of two sets: 1 - a field K

2 - an abelian group V with elements u, v... called vectors and a composition law² +: $V \times V \rightarrow V$ such that $\forall \alpha, \beta \in K$ and $\forall u, v \in V \exists$ a map $K \cdot V \rightarrow V$ called the scalar multiplication such that

$\alpha \cdot (\beta \cdot u) = (\alpha \cdot \beta) \cdot u$	associativity
$\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v$	distributivity
$(\alpha + \beta) \cdot u = \alpha \cdot u + \beta \cdot u$	distributivity

The unit element with respect to + in V is called the zero-vector.

Example: The set of arrows pointing in a direction \vec{v} satisfy the conditions above and therefore are called vectors.

In the abstract sense, any element of a set which satisfies the conditions of a linear vector space is a vector: ordinary functions are vectors, matrices are

 $^{^{1}}$ Some authors define a ring as a set where the multiplication is a semigroup. In this case, if the identity element exists the ring is called a unital ring.

²this composition law + in V is indicated with the same symbol of the composition in the field K. These two compositions are distinct.

vectors as well as tensors and linear connections.

A R-module satisfies the same conditions of a vector space but instead of being over a field K it is over a ring R.

An **algebra** is a vector space together with a composition law \Box which is a magma. Additional proprieties satisfied by \Box give different kinds of algebra.

If $\forall u \exists e \in V$:	$e\Box u=u\Box e=u$	unital
If $\forall u, v, w$	$u\Box(v\Box w)=(u\Box v)\Box w$	associative
If $\forall u, v$	$u \Box v = v \Box u$	commutative

e, the unit of A, in general is different from the zero-vector.

Example: V = set of functions $f : \mathcal{M} \to \mathbb{R}$, $K = \mathbb{R}$ and $\Box =$ ordinary multiplication of functions, e = f(x) = 1. All of the above proprieties are satisfied.

Example: $V = \text{set of the matrices } A, K = \mathbb{R} \text{ and } \Box = \text{matrix multiplication}, e = 1$. The algebra is unital and associative but not commutative.

Example: Lie Algebra. $V = \mathbb{R}^n$, $K = \mathbb{R}$ or \mathbb{C} and $\Box = [,]$ the Lie Bracket which satisfies:

[u,v] = -[v,u]	anticommutativity
$[\alpha u + \beta v, w] = \alpha [u, v] + \beta [v, w]$	bilinearity
[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0	Jacoby

Lie algebra are not unital, not associative and not cummutative.

Example: $V = \mathbb{R}^3$, $K = \mathbb{R}$, \Box = the cross product of ordinary vectors \vec{v} . It's a Lie algebra since the cross product satisfies the conditions of the Lie bracket. With e_i a basis of V^3 , the cross product reads $e_i \times e_j = \epsilon_{ijk} e_k$ where ϵ_{ijk} is the Levi-Civita symbol. It is the algebra SO(3). There is no unit since $\nexists \vec{e} : \vec{v} \times \vec{e} = \vec{v}$.

Example: Poisson algebra. $V = \text{set of smooth functions } f \in C^{\infty}(\mathcal{M}), K = \mathbb{R}$ or \mathbb{C} and with two \Box compositions. The first $\Box = \text{ordinary multiplication of functions, which makes the Poisson algebra commutative and associative. The second <math>\Box = \text{Poisson bracket which is a Lie Bracket satisfying the additional condition:$

$$[u, vw] = [u, v]w + v[u, w] \qquad Leibniz.$$

Notice how the symbol vw only makes sense because the first composition is defined.