
Electric Field

Electric Charge

Atomic structure

All materials can have a charge, which we refer to as either “positive” or “negative”.  The
origin of this charge is to be understood within the proprieties of the elementary particles 
which make an atom. 

The atom consists of a positively charged nucleus surrounded by negatively charged 
electrons.  The nucleus consists of protons, which have positive charge, and neutrons, 
which have no charge.  

The charge of a proton is the same in
magnitude but opposite in sign to 
that of an electron.  In a neutral atom
there are an equal number of 
electrons and protons and its net 
charge is zero. The overall net 
charge of the material composed of 
neutral atoms is zero as well.

Charging a material

When two dissimilar materials (e.g., a plastic rod and cloth, a glass road and a cloth, or a 
comb and your hair) are rubbed together, then electrons can transfer from one material to 
the other so that the material with an excess of electrons has a net negative charge and the
material with a deficit of electrons has a net positive charge.  This will occur because the 
two materials have a different affinity for electrons.  
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In the picture above a glass rod is charged with a cloth. The rod becomes positively 
charged because some of its electrons are taken away from the cloth which become 
negatively charged.
If the rod were a plastic rod it would take the electrons away from the cloth and the 
plastic rod becomes negatively charge. 

Materials can be electrically classified by how well charges move through the materials.  
In a conductor, charges flow freely.  Examples of conductors are copper, silver, gold, and
aluminum.  In an insulator, the flow of charges is virtually zero.  Examples of insulators 
are glass, rubber, and wood.  In a semiconductor, charges can flow weakly only in one 
direction.  Examples of semiconductors are silicon, germanium, and gallium arsenide.  
Later we will see that the degree to which charges can flow in a material can be 
quantitatively characterized by its conductivity.  

Forces exist between charges.  Like charges repel (e.g., positive-positive or negative-
negative), while unlike charges attract (positive-negative).

Conduction

Some of the charge on a negatively (or positive) charged rubber rod can be transferred to 
an initially uncharged isolated metal sphere by touching the rod to the sphere, as shown 
in the figure below.  The rod initially pushes electrons to the opposite side of the sphere, 
making one side positively charged and the other side negatively charged.  When the rod 
touches the sphere, electrons transfer from the rod to the sphere because of the attraction 
of opposite charges.  When the rod is removed, then the excess electrons remain on the 
sphere and become uniformly distributed over the surface because of their mutual 
repulsion.
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Induction

A positive charge can be induced onto the metal sphere without bringing the negatively 
charged rod into contact with the sphere.  Instead, a conducting wire connects the sphere 
to a ‘ground’ (e.g., a copper pipe buried in the earth).  This ‘ground’ provides an infinite 
reservoir of electrons to flow to or from the conducting sphere.

         

        

  

Electric charge is discrete.

The smallest  unit  of charge is  that  of  the electron  or proton.   The magnitude  of the
electronic charge is

The charge of the proton is qp = e and the charge of the electron is qe = -e.  All charges
are integral multiples of e.   If a macroscopic object (as a plastic rod) has a net charge Q
then Q can only assume the value Q = ne where n is an integer. For example an object
with a net charge Q = 2.17 x 10-19 C does not exists in nature.

If a material has a net charge, then it can be used to charge a conductor either by direct 
contact (conduction) or indirectly without touching (induction).
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Coulomb’s Law

Two point charges located at some distance r away from each others experience a 
attractive or a repulsive force depending if their sign of charge is opposite or equal.

The magnitude of the force between the two point charges is given by Coulomb’s law:

q1 and q2 are the charges and r is the distance between the charges. ke is the Coulomb 
constant and is given in the SI system by

The SI unit for charge is the coulomb (C).  
In Coulomb’s law  F is positive and repulsive if  q1 and  q2 have the same sign and is
negative and attractive if q1 and q2 have the opposite signs.

Coulomb’s law is mathematically very similar to the universal law of gravitation between
two point masses, which is

where G is the universal gravitation constant.  Both forces are proportional to the product 
of the charges or masses and inversely proportional to their separation.  The gravitational 
force, however, is always attractive (there are no negative masses); whereas, the electrical
force can be attractive or repulsive.
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F = k e
q1 q2

r2

k e = 8 .99 x 109 N⋅m2 /C 2

F = G m1m2

r 2



Example

Compare the magnitude of the electrical and gravitational forces between the electron and
proton in the hydrogen atom.

Given:  me = 9.11 x 10-31 kg, mp = 1.67 x 10-27 kg, r = 5.3 x 10-11 .

The electrical forces in an atom are so large compared to the gravitational forces that the 
gravitational forces can be completely neglected.  When considering ordinary masses, 
gravity is much more important since the net charge on the masses is relatively small.

Example

Find the force on the charge q2 in the diagram below due to the charges q1 and q2.

F12=ke

|q1||q2|
r

122
=(8 . 99 x109 N⋅m2/C2)

(1 x10−6C )(2 x 10−6 C )
( 0. 1m)2 =1.8 N ( to the left )

F32=ke

|q3||q2|
r

322
=(8. 99 x109 N⋅m2 /C2)

(3x 10−6C )(2 x10−6 C )
(0 .15 m)2 =2 . 4 N ( to the right )

F2=−F12+F32=−1 .8 N+2. 4 N=0 .6 N ( to the right )
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Fe=k e

|qe q p|

r 2 =(8 .99 x109 N⋅m2/C2)(1 .6 x 10−19C )2

(5 .3x 10−11 m)2 =8 .19x 10−8 N

F g=G
mp me

r2 =(6.67 x 10−11N⋅m2 /kg2 )
(1 .67 x 10−27 kg )(9 .11 x 10−31kg )
(5 .3 x 10−11 m)2 =3.61 x 10−47 N

Fe

F g
=8 .19 x 10−8 N

3 .61 x 10−47 N
=2.27 x 1039



Example

Find the force on q2 in the diagram to the right. 

Fx=−F12=−1. 8 N
F y=F32=2 . 4 N

F2=√Fx
2+F y

2=√(1 . 8)2+(2. 4 )2=3 . 0 N

tanθ=
F y

Fx
=2.4

−1. 8
=−1 .33

⇒θ=126 . 9o (ccw from pos . x−axis )
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Electric Field

The electric field is the fundamental concept for electric phenomena. It also helps to 
visualize the fact that charges can exert forces on each other without being in contact.  
A total electric charge Q present on an object produces an electric field E in the space 
surrounding it, analogous to the gravitational field due to a mass. 

 The charge Q is distributed on the red object above. The electric field at P is shown

In order to determine E due to Q and at P we need a second charge, called the test charge.
If q satisfies: 

1- It’s positive
2- If its numerical value is very small compared to Q in such a way that Eq , the 

electric field produce by the test charge can be ignored.

then q is called a test charge q = q0.

To find E due to Q at a location P, the test charge q0 is place at P to ‘test’ the Coulomb 
force F between the Q and q0 . The the electric field of Q is evaluate by dividing out the 
test charge.

  E = F
q0

(units are N/C)

The direction of E is the same as the direction of F on the test charge.  

If we know E due to some charge Q, we can find the force on any other charge q from

            F = q E

Here q is any charge, not necessarily q0.
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The Electric field is a vector field

There is a vector at each point in space.
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Electric field due to a point charge

The magnitude of the force on a test charge q0 due to a point charge Q is

F= ke
|Q||q0|

r 2 .

Thus, the magnitude of the electric field due to Q is 

E = F
q0

= k e
|Q|
r2 .

Notice how the magnitude of E depends on Q only and not q0. Every charge is a source of
its own electric field in the surrounding space. The direction of E is radially away from 
positive charges and radially toward negative charges.

Example

Find the electric field at P due to charges q1 and q2.

E1=ke

|q1|

r1
2 =(8 . 99 x109 )

(2 x10−6 )
(0 . 4 )2 =1. 13 x105 N /C

E2=k e

|q2|

r2
2 =(8 . 99 x109 )

(1 .5 x10−6 )
(0 . 5)2 =5 . 4 x 104 N /C

Ex=E1−E2 cosϕ=1. 13 x 105−5 . 4 x104 cos (36 .9 )
=6 . 9 x104 N /C

E y=E2sin ϕ=5 . 4 x104 sin (36. 9 )=3 . 24 x104 N /C

E=√Ex
2+E y

2=√(6 . 9 x 104 )2+(3 . 24 x104 )2

=7 .6 x 104 N /C
θ=tan−1 ( Ey /Ex )=tan−1 (3 . 24 /6 . 9 )=25o
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Electric Field Lines

The strength and direction of the electric field can be graphically displayed using electric 
field lines.  These are lines that originate on positive charges and terminate on negative 
charges.  The number of lines originating or terminating on a charge is proportional to the
magnitude of the charge.  The direction of the electric field is the direction of the tangent 
to a line and the strength of the electric field is proportional to the density of lines.  

The field lines for a positive point charge and a negative point charge are shown below.

                        

         positive charge Q1 positive charge Q2 negative charge Q3

            
                Q1 = - Q3  > Q2                   

If a positive and a negative charge are brought close together, then the field lines are a 
superposition of the field lines for the separate charges.
Likewise, for two equal positive charges which are close together:
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Electric field due to a continuous charge distribution

For a continuous distribution of charge, the electric field can
be found by summing up all the contributions due to the
elements of the distribution.

Δ E⃗=ke
Δq
r2

r̂ ,

where Δq is an elemental part of the charge and r̂ is a unit
vector pointing away from the charge.  Summing, we have

E≈∑ ΔE=ke∑ Δq
r2

r̂

In the limit of infinitesimal charge elements Δq⇒dq

E⃗ = k e∫ dq
r2 r̂

Charge densities

Volume charge density ρ = dq
dV

⇒dq = ρdV  

Surface charge density σ = dq
dA

⇒ dq = σdA

Linear charge density   λ = dq
dL

⇒dq = λ dL
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Example

E⃗ = ke∫ dq
r2

r̂=k e∫ σ
r2 r̂ dA

Electric field due to a uniform charged rod

Electric field near the end of a uniformly charged rod.

A piece of the rod of length dx has charge dq = λdx.  So. The rod has charge Q, length L, 
and charge per unit length λ = dq/dL= Q/L.  

dE=ke
dq
x2

=ke
λ dx
x2

E= ∫
a

L+a

ke
λ dx
x2 =−ke λ [1x ]a

L+a

=ke λ(1
a

−1
L+a )=ke λ L

a( L+a )

E(a)=ke
Q

a (L+a)

Note that this expression for E is not the same as for a point charge.  However, in the 
limit that L → 0, it approaches the expression for a point charge.  (Show that this is true.)
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Uniform charged ring

We can easily calculate the electric field on the axis of a uniform ring of charge.

   dq=λ dl=λ2 πda

    Q=∫dq=∫λ2πda=2πλa

λ= Q
2πa

The electric field due to dq along the x axis, at a distance x from the center has magnitude

dE=ke
dq
r2

Considering the contributions from all the charge elements, the y-components add to zero
and the net field is along the x-direction with magnitude

E =∫ dE x=∫cosθ dE=k e∫cos θ dq
r2

=ke∫ x
r

dq
r2

=ke
x
r3 ∫ dq= ke

Q x
r3

E = ke
Q x

(x2+a2)3/2

At a fixed value of x the infinitesimal dq along the ring contribute equally to the E. The 
integration over the charge does not depend on x and r which are taken out of the integral.
What is the limiting expression for x >> a?  (given by lim a →0)

E = ke
Q
x2 point charge

How about x = 0?

E = 0 no electric field

This indicates there is a location between x = 0 and x = ∞ where E has a max value. To 
find the location we solve dE(x) /dx = 0 which gives x=±(1/√2)a .
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Conductors in Equilibrium

Consider an isolated conductor, such as copper, silver or gold, in which the charges are in
equilibrium.  (No batteries, for example, to drive a current through the conductor.)  The 
conductor will have the following properties:

1. E = 0 everywhere inside the conductor.
2. Any excess charge will reside on the surface.
3. E just outside the conductor will be perpendicular to the surface.
4. Charge concentrates more on the surface regions which have the greater 

curvature.

We consider each property separately.

1. E (inside) = 0.  Conductors have electrons that can freely move under the 
influence of an electric field.  If E (inside) were not zero, then there would be 
currents inside.  However, we are considering the properties of conductors in 
electrostatic equilibrium.

2. Excess charge resides on surface(s).  Since like charges repel, if there were excess
charge inside, then the repulsive forces on these charges would push them as far 
apart from each other as possible, which would mean to the surface.  The binding 
force of the electron to the metal would keep them at the surface (unless the 
charge was so great that the electrostatic repulsion would overcome the binding 
force and the charge would ‘arc’ to another object.)

3. If E is perpendicular to the surface, then E (parallel) = 0.  If E (parallel) were not 
zero, then there would surface currents.  Again, we are assuming that the charges 
are in equilibrium.

4. The curvature reduces the component of the repulsive force between charges that 
is tangent to the surface, which allows the charges to be closer together.  Because 
the electric field is greater near sharp points, these are the places where the charge
is most likely to arc if the charge on the conductor becomes too great. 
Consequently, the electric field is greater at these sharp regions. 
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Motion of a charge in a external electric field

Example

A point charge q1 = 3.8 x 10-10 C with mass m1 = 6.85 x10-11 kg is placed one meter away 
from another point charge q2 = 4.11 x 10-10. Find the initial acceleration of q1.

The electric field due to q2 is  E2 = k
q2

r2 = 3.70 N
C

. To find the acceleration of q1:

F = m1a ⇒ q1 E2 = m1 a

a = 1
m1

q1 E2 = 20.52 m /s2

Example

An electron is released from rest in a uniform electric field E = 1000 N/C.  How long 
does it take the electron to travel a distance of 2 cm?

In a uniform electric field, a charge undergoes an acceleration given by

a = F
m

= qE
m

      since E is uniform a is constant. 

Using the kinematic equations for constant acceleration

x=1
2 at 2 ,

a=qE
m

=
(1 .6 x 10−19C )(1000 N /C )
9 .11 x10−31kg

=1 . 76 x 1014 m /s2

t=√2 x
a

=√2(0. 02 m)
1 . 76 x1014 m /s2 =1. 51 x 10−8 s

How fast is the electron going after 2 cm?

v=at=(1 .76 x 1014 m /s2 )(1 .51 x10−8s )=2. 66 x106 m /s
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