
Magnetic Field Sources

In 1820 Danish physicist Hans Christian Ørsted noted that when a compass is placed next
to a wire carrying current, its needle would turn.  By further investigations he discovered 
the proprieties of the B field produced by a current in a straight wire.  

Biot-Savart Law

Given the experiment fact that a current is a source of a magnetic field, the next step was 
to formulate the general equation in able to provide the B field due to a steady current I 
(dI/dt = 0) moving in a wire of any shape. This equation is the Biot-Savart Law. 

B⃗ =∫d B⃗ =

=
μ0

4 π ∫ I d l⃗× r̂
r 2

where:
  I is the current.
  dl is the infinitesimal line element.

r̂ is the unit vector pointing toward point P.
  r is the distance between P and dl.
  μ0 = 4π x 10-7 N/A2 (Newton// Ampere2) is a
constant called the permeability of free space
(or magnetic constant). It plays for magnetism 
the analog role of ϵ0 for electricity.

The integration is over the entire wire, × indicates the cross product of the vector dl with 
the unit vector r̂ also referred as versor.
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Magnetic field due to a circular current loop

The field lines due to a current loop are
shown qualitatively to the right.  The field
passes through the loop in a direction given
by still another right hand rule.  If your
fingers circulate around the loop in the
direction of the current, then the field passes
through the loop in the direction of your
thumb.  The field along the axis of the loop
can be calculated using the Biot-Savart law.

The magnitude of the field due to the element of the wire dl is given by

dB=
μ0 I
4 π

dl sin 900

r2 =
μ0 I
4 π

dl
(z2+a2)

,

where z is the distance from the center of the loop and a is the
radius of the loop.  The field makes an angle  with the z-axis.
The x-components of the field due to all the elements of the
loop cancel and the z-components add.  So the total field along
the z-axis is

B=∫dB cos ϕ=
μ0 I
4 π ∫ dl cosϕ

(z2+a2 )
=

μ0 I
4 π

a
(z2+a2)3/2∫ dl

Since  ∫dl = 2 π a , so    

B(z)=
μ0 I a2

2( z2+a2)3/2

In the center of of the loop z = 0 this expression reduces to

B =
μ0 I
2 a
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Ampere’s Law

The Ampere Law is another formula which provides the relation between the B field and 
the source current I. It contains the same information of the Biot-Savart Law but is 
written in a different mathematical format.
Ampere’s law relates the circulation of the magnetic field B to the current that produces 
the B field. It is given by

∮ B⃗⋅d l⃗ = μ0 I ENC

The circulation is any geometrical closed line: the dash loop.
The integration is over the infinitesimal line element dl.
IENC is the net current enclosed by the circulation.  

Note: the dl in the Ampere law is significantly different from the dl in the Biot-Savart 
law. In the latter dl is tangent to a physical wire, while in the Ampere law dl is tangent to 
the circulation which is not physical.

RHS (Right Hand Side) of Ampere Law

If IENC = 0 does mean then B = 0? No.
It simply meas that performing the integration (= summing the vales of  B) along a close 
loop gives as result the number 0. The B filed is non-zero in the surroundings.

If IENC = 0 does mean there are no currents? No.
IENC is the net current within the loop. There is no restriction on the number of currents, 
some of which might be positive (in one direction), others can be negative (opposite 
direction) and they might cancel out. 

The sign convention for the current depends on the direction of the integration, as follow

IENC =∑ I i where the current Ii has sign

positive: if it agrees with the right hand rule. 
negative: if it disagrees with the right hand rule.

Example

Find the enclosed current corresponding to the closed loop in
the figure on the right. The two currents have equal
magnitude.

I ENC =+i1+(−i2)=i1−i2 = 0

which does not imply B = 0.
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LHS (Left Hand Side) of Ampere Law

If the problem has sufficient symmetry, Ampere’s law can be used to calculate B. The 
trick is similar to the Gauss Law: the result of the integration does not depend on the  
path of the circulation, so we can choose a circulation which matches the geometry such 
that B is constant along the path and it can be pulled out of the integration.  

Magnetic field due to a long straight current-carrying wire

If the loop is chosen to be a circle of radius r with the wire through the center, then by 
symmetry B has the same magnitude at all points on the circle.  Also, from the Biot-
Savart Law we can conclude that the direction of B is everywhere tangent to the circle.  

∮B⋅dl=B∮dl= B (2 π r )=μ0 I

B(r) =
μ0 I

2 π r

where r is the distance from the center of the wire. The
field circulates about the wire and decreases in magnitude
with distance from the wire.

The direction of the magnetic field is determined by a right hand rule:

Grab the wire with your hand with you thumb pointing
in the direction of the current.  Then your fingers
circulate around the wire in the direction of the
magnetic field.

Note: this RHR is different from of the Lorentz force
(a cross product which relates three quantities). In this
case there are only the two physical quantities I and B.
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Example

Two parallel wires 20 cm each carry a current of 5 A.  Find the
magnitude and direction of the magnetic field at a point
between the wires 15 cm from one wire and 5 cm from the
other.

At the point in question, the field due to the left wire points into the page and the field 
due to the right wire points out of the page.  Letting out of the page be the positive 
direction (this is arbitrary), we have

B=−B1+B2=
μ0 I

2 π r1
−

μ0 I
2 π r2

=−(4 π x10−7T⋅m / A )(5 A )
2 π (0 . 15 m)

+( 4π x 10−7 T⋅m / A )(5 A )
2 π (0. 05 m)

=−6 . 67 x10−6 T+2 x10−5T=1.33 x10−5T ( out of page )

Force between two current carrying wires

Two parallel current-carrying wires will experience an attractive or
a repulsive force, depending on whether the currents are in the
same direction (attractive) or in opposite directions (repulsive).
Each wire sees the field created by the current in the other wire.
By combining the formula for the field generated by one wire and
the force on the other wire due to this field, we get

F =
μ0 I 1 I 2 L
2 π a

where a is the separation of the wires and L is the length of the wires.

Example

For the two wires in the previous example, the force per unit length is

F
L

=
μ0 I 1 I2

2 π a
=(4 π x10−7T⋅m / A )(5 A )2

2 π (0 .2m)
= 2.5 x 10−5 N /m
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Magnetic field due to a solid wire 

A wire with radius R that carries a uniform current I.  

If we apply Ampere’s law to a loop of radius r outside
the wire (loop 1) then we get the previous expression
for the magnetic field.  However, inside the wire
(loop 2), the current through the loop is a fraction of
the total current.  This current is

I '=JA=( I
π R2 ) π r2= r2

R2 I

So, 

∮B⋅ds = B 2 π r=μ0 I '=μ0
r2

R2 I

B =
μ0 I r

2 π R2 , r<R

So, the magnetic field at the center of the wire is zero and it is a maximum on the surface 
of the wire.

Magnetic field of a solenoid

A solenoid is a cylindrical coil of wire.  The magnetic field due to a solenoidal current is 
shown below. In the approximation of a long solenoid compared to its diameter, the field 
on the outside is similar to a bar magnet and negligibly weak.
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To calculate B inside, we pick a rectangular loop as
shown to the right, part of which is  inside and part of
which is outside. The only contribution to the integral
in Ampere’s law is from the path 1. Paths 2 and 4 are
perpendicular to B (dot product is zero) and outside
the field is weak.  If the loop has length l and encloses
N turns, then we have

∮ B⃗⋅d⃗l=B l = μ0 NI

or more generally for solenoid of total length l = L 

B = μ0 nI ,

where n = N/L is the number of turns per unit length.

Note: the B field inside is nearly uniform. It is the analog case of the E field between two 
plates, therefore is a very simple field to deal with mathematically.

Magnetic Field of a Toroid

A toroid is a coil wound around a doughnut shaped form.  
If the windings of the toroid are close together, then the field
is contained entirely within the toroid windings and is in a
circular direction. 

Applying Ampere’s law to a circular path within the toroid
(the blue dashed line) we obtain

∮ B⃗⋅d⃗l= B L=μ0 NI

where we used the approximation that if the diameter of the
toroid is large compared with the thickness 2r >> ( b - a),
then B is nearly constant from inside to outside (a < r < b) 
 and we have the expression of B

B(r) =
μ0 NI
2 π r

where L = 2 π r. The toroid is a useful device used in everything from tape heads to 
tokamaks (nuclear fusion reactor).
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Microscopic Interpretation of Magnetism 

In order to explain the origin of the magnetic field due to a ferromagnetic material is 
necessary to explore the atomic structure of the material. At the atomic level each 
electron spinning around its nucleus generates an electronic current and therefore it is a 
source of a B field (Ampere Law). Each atom is a like a very weak magnet.

The magnetic moment of each atom is  

μ⃗ = IA n̂ where n is the normal to A

and the B field produced by the atom is in the same
direction of n. In a ferromagnetic material, example a rod
of iron, the magnetic moments of its atoms point in random
directions. 

If the iron rod is placed in a region where there is an external magnetic field BEXT, then 
there is torque τ⃗ = μ⃗ × ⃗BEXT acting on each atoms which tends to align them with the 
external field BEXT. 

As consequence each B field of the atoms (the black
arrow in the figure to the right) will point in the same
direction. When BEXT is removed, the atoms will maintain
their new orientation and the iron rod is magnetized.  

Due mainly to heat, the atoms will move back to random
orientation and the iron rod looses its propriety of being a
magnet.

Permanent magnets, example a rod of Alnico, has 
different atomic proprieties such that once its atoms get
aligned by BEXT they preserve their new                                      No  BEXT         Yes  BEXT

configuration over time, allowing them to become 
permanent magnets.
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The Sources of the Electric and Magnetic fields

From the microscopic interpretation of magnetism it follows that the magnetic field due 
to a magnet is simply a consequence of the Ampere Law, therefore magnets are not 
considered intrinsic source of B.

The following table summarize the possible sources of E and B we have learned so far

sources of E Q the charge

sources of B I the current 

The column on the far right is left blank intentionally: there are actually two more ways 
to generate E (Faraday Law) and B (Ampere-Maxwell Law). We will learn these sources 
in the following chapters.

Since the current is due to charges in motion and since motion is relative to the observer, 
then different observes detect E and B differently. 

Example 

A plastic rod with charge Q is placed on a desk and does not move. There are two 
observers: Alice and Bob. Alice sits on a chair in front of the desk, Bob is walking in the 
room. If each observer has a device which measures both E and B what do they measure?

Q is at rest respect to Alice, therefore she measures the E due to Q. 
Q is in motion respect to Bob, therefore for him a electric current exists. Bob measure 
also a B field due to the current (Ampere law).  Bob also measures a E’ field due to Q. 
This E’ is different from E since, loosely speaking, some of the E observed by Alice 
became the B and E’ fields measured by Bob. 

From this considerations we deduce that E and B are just two aspects of the more general
concept: the electromagnetic field. We will not study the electromagnetic field as a single
physical quantity in PH106 since more advance mathematics (tensor calculus) is 
necessary.
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