
Induced Voltages and Inductance

In previous sections we have seen how electric fields are produced by charges and 
magnetic fields are produced by currents.  Electricity and magnetism were viewed 
independently, except for the fact that electric fields drive currents which can produce 
magnetic fields and forces act on charges moving in a magnetic field.  However, it turns 
out that electric and magnetic fields are intimately related.  We can generate an electric 
field and a current with a time-varying magnetic field.  Later we will also see how a 
changing electric field can produce a magnetic field.

Induced EMF 

A magnet moved near a coil of wire induces a change in the potential around the coil (an 
induced emf) which generates a current (induced current) in the coil.  The induced emf 
and current depend on the rate of the change of the magnetic flux through the coil.  

Faraday’s Law

The induced emf in a loop depends on the rate at which the magnetic flux changes 
through the loop.  Faraday’s law gives the induced ℇ D as

ℇ D =−N
d Φ( B⃗(t ))

dt

where N is the number of turns of wire in the coil and dt is the time during which the flux
changes. The induced emf is originated by the change in time of the B field in each loop. 
When the B field does not vary, then there is no induced emf. Since motion is relative, 
the induced emf is generated by either moving the magnet or moving the coil. 
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Example

A circular wire is placed in a region where there is
a B field. If the field changes in time, B = B(t) an induced
emf is present in the wire.

When the loop is a wire of resistance R which obeys the
Ohm law, the induce current ID is 

I D = 1
R
ℇ D

The fundamental importance of Faraday Law is that it is the third of Maxwell equations.

Example

A magnetic field points into the page, in which
lies a circular coil of wire of radius 2 cm.  If the
field is increased from 0.5 T to 0.6 T in a time of
0.05 s.  What is the average induced emf in the
loop during this time?

ΔΦB = ΦB , f −ΦB , i = Bf A−Bi A = (ΔB) A=(0.1 T )π (0 .02m)2=1.26 x 10−4Wb

|emf |=
ΔΦB

Δt
= 1 .26 x 10−4 Wb

0 . 05 s
= 2 .51 x 10−3 V

What is the induced current? For example if the resistance is R = 0.02 , then the induced 
current is

ID =
|emf |

R
= 2. 51x10-3 V

0 .02Ω
= 0 .126 A

Note:

This is the ‘integral form’ of Faraday Law since the total flux (integration over dA) is 
considered. When expressed in this form it also includes the cases of an emf generated by
the change of the area or the angle in the flux, i.e. the motional emf due to the Lorentz 
force, see next paragraph on Flux rule. Even if mathematically the Faraday law and the 
Flux rule looks identical, the physics is significantly different: the term “Faraday Law” 
should refer only to an induced emf generated by a time varying B field. This is not 
always the case in the literature, so be careful. Instead when the Faraday law is expressed 
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in differential form (using vector calculus, see more advanced courses) this ambiguity 
does not arise.

Lenz’s Law

The minus sign in Faraday’s law is symbolic and is refereed as the Lenz’s Law.  Lenz’s 
law determines the direction of the induced emf and therefore the direction of the induced
current. The induced current ID, because the Ampere Law, generates its own induced field
BD.  This field is different from the field B of Faraday Law.  To find the direction of ID 
first we need to determine the direction of BD. The Lenz’s law tells us how:  
the direction of BD opposes the change in the original flux. 

It is important to note that it is not the magnitude or direction of the original flux that 
matters. It is whether this flux is increasing or decreasing and the rate at which it changes.

If the flux increases then BD is in the opposite direction of B.
If the flux decreases then BD is in the same direction of B.

Once the direction of  BD is determined, the direction of ID

follows from the RHR of the Ampere Law.

The figure to the right illustrates how the flux in a loop can be
changed by moving a bar magnet either toward or away from
the loop.  If there is no motion, as in (b), then there is no
induced current.  If you reverse the direction of the magnet,
then the induced direction of the current is reversed. 

Example

The direction of the induced current must be so that it
produces an induced magnetic field which is out of the
page and opposes the increase.  For this to occur, the
direction of the induced current must be counter-
clockwise.
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The motional emf ℇ M

For a single straight conducting rod moving perpendicular to a B
field, the Lorenz force FB moves the charges toward the upper end
of the rod and leaves negative charge at the bottom.  
The work done by Lorentz force is  

 W =∫FB dy = FB l   

where  FB is assumed to be constant and l  the length of the rod.

A potential difference is generated between the ends of the rod which is calculated as the 
work per unit charge. 

ℇ M =
Fb l
q

= qvBl
q

= Blv

If we were to connect the opposite ends of the rod with a wire, then we would have a 
complete circuit and current will flow.

Example

A Boeing 747 has a wingspan of 60 m and is flying north at 250 m/s.  The earth’s 
magnetic field is 2.5 x 10-5 T and is directed north but below the horizon at 30o.  What is 
the emf that is developed between the wing tips?  What is the polarity of the emf?

Only the vertical component of the magnetic field generates a motional emf.  So,

ℇ M = B l v=B sin (200 ) l v=(2 .5 x 10−5 T )sin(300 )(60 m)(250 m /s )=0 .19 V

Using the right-hand rule, the force on the positive charges in the airplane are west, to the
tip of the left wing is positive and the tip of the right wing is negative.

The ‘Flux Rule’

Suppose the rod above is sliding along parallel
rails that is connected at one end so that there is
a complete circuit.                                 

As the rod moves to the right with velocity v, 
the area enclosed by the circuit increases in
time as dA = l dx. The magnetic flux through

4



the loop increases. We can explain the motion of the charges in a differ way: using Flux 
rule which looks identical to Faraday Law:

  ℇ M = B l v = B l d x
dt

=B dA
dt

=
d Φ(B)

dt
                      

Note how the flux changes because the area is time dependent. B stays constant. 

Example 

As a loop is moved out of the constant magnetic field B
which points out of the page. The flux decrease because
the area ‘facing’ B decreases. An induced current is
generated in the loop because of the motional emf (the
Lorentz force acting on the charges present in the wire). 
What about the direction? Since the flux is decreasing the induce magnetic field points in 
the same direction of B, from Ampere Law the induced current is counter-clockwise.

When the flux rule is used the motional emf ℇ M (due to the Lorentz force acting on a 
wire moving in an external constant B field) and the induced emf ℇ D (Faraday’s law), 
coincidentally have the same form and describe the same effect: the induced current in 
the wire.

To physically disgusting the two keep in mind: if the magnetic flux changes because the  
B (t) field is changing in time, that is the Faraday Law. If the flux changes because the 
area A(t) or the angle θ(t) (see next) is changing in time, then it is the flux rule.

The flux rule can be used to calculate the motional emf ℇ M but with caution: it might  
not work if switches or sliding contacts or extended conductor (Eddy currents) are 
present. To get the correct answer for ℇ M it is always safer to start from the Lorentz 
force acting on the wire.

Example - Faraday’s Paradox

A circuit is placed in a region where a uniform B field
points into the page. Faraday Law does not apply in this
case since B does not change in time. What about the
flux rule? When the switch is moved from position 1 to
2, the area of the circuit doubles.  If we were to apply
the flux rule we would obtained a non-zero emfM

  ℇ M = dΦ(B)
dt

= B dA
dt
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from which it follows an induce current in the circuit. In reality this is not what happens, 
the ammeter measures no current. Why? Because no force is applied to move the charges 
in the wire, and so there is no Lorentz force to generate a potential difference. 

Example – Faraday Disk

A conducting disk rotates with velocity ω in a region where a
uniform B field is present. The Faraday Law does not apply in this
case since B does not change in time. A sliding contact allows for a
close circuit (charges move radially from the center of the disk to
point b) and there exists an induced current. Since there is no
change in the flux thought the loop made with the wire, the flux rule
would wrongly give a zero induced current. The current originated 
from the motion of charges in a B field (Lorentz law).

The flux can changed in a coil by changing the area or the
orientation of the loop in the field, i.e. if there is a change in the
direction between B and n (the normal to A).

Example 

A loop of areas A rotates with angular velocity ω 
in a uniform B field. The angle θ between B and n
changes because of a force acts on the loop. The
green arrow represents the velocity of a charge
inside the wire. Because of the Lorentz force a
motional emf drives the induced current in the
loop. 
Alternatively, using the flux rule (which can be
used in this case)

ℇ M = dΦ
dt

= B A d
dt

cos (θ )

Example

Suppose the magnetic field of the previews example is kept at 0.5 T, but the loop is 
flipped by 180o in a time of 0.05 s. What would be the induced emf?

The flux would reverse direction, so the change would be twice the original value.

ΔΦ = BA Δ(cosθ) = BA (cosπ − cos0)=−2 BA

|emf M|= Δ Φ
Δt

=
2(0 .5 T )π (0. 02 )2

0 . 05 s
=0 .025 V
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Electric generator

An electric generator converts mechanical energy (motion) into electrical energy (voltage
and current). It’s explained by the flux rule. It works like a reversed DC motor.  

Example

A coil with N turns and area A rotates at
constant angular frequency f within an
uniform B field. What is the expression of
the induced emf?

Since the angular velocity ω = 2 π f is constant, then  θ(t) = ωt

ℇ M = N d Φ
dt

= N B A d
dt

cos (ω t )=ω NBA sin(ω t)

The emf depends on the frequency. Its max value, corresponding to sin (ωt) = 1

ℇ M = ω NBA

depends on the rotational frequency. If the rotation happens faster then the emfMAX 
increases.  

An electric generator works because of the Lorentz force which pushes the charges to 
move (the induce current). In this sense it can be seen as an electric motor working in 
reverse.
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Electric Power plant

Wind: 

The motion of the wind rotates the turbine.

Hydroelectric:

The water transfer its potential energy into
mechanical energy to rotate the turbines. 

Fossil Fuel:

The heat boils water and generates a stream of
steam which rotates the turbine.

Very bad for the environment. Good only for the
greedy people who do not care to destroy 
the planet for profits.

We do have the technology to go 100% green using renewable energy. Politics is the 
reason why is not the reality (yet). 
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The General Form of Faraday Law

A B field is present in a region of space. The B field changes in time (for example a time 
dependent current is the source of it). As a consequence an electric field is generated in 
the surrounding.  Since ΔV =−∫ E⃗⋅d l⃗ we obtain the relation between the E and B as 

∮ E⃗⋅d l⃗ =−
d Φ( B⃗)

dt
(integral form)

The integration is a circulation (close path) which does not depend on the path. This form
of Faraday Law is more general since it holds without requiring any wire. If then you 
place a wire, each charge experiences the force F =qE and their motion generates the 
induced current ID.

The direction of E is obtained by checking the direction of the induce current ID if a wire 
is placed over the circulation.

Example

A current I ( t)=I 0 e−α t is the source of a B field inside a solenoid. Find the expression 
of the electric field at distance r outside the solenoid.

Because of Faraday Law an electric field is
generated since B varies in time. The change
is the flux is

dΦ(B)
dt

= αμ0 n I 0 A e−α t

with B (t)=μ0 nI (t) for a solenoid with
cross section A. Along the circulation at a
fixed r, the E field is constant and can be taken out of the integral

E∮ dl = E 2πr

from which it follows 

E(r , t) =
αμ0 nI 0 A

2π
1
r

e−α t

We notice how the electric field is both time and position dependent. 
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There is an important difference between the induce electric field and the electric field 
due to charge distribution. The latter in conservative 

∮ E⃗⋅d⃗l =∫a

b
E⃗⋅d⃗l+∫b

a
E⃗⋅d⃗l = 0 ⇒ ∫a

b
E⃗⋅d⃗l=∫a

b
E⃗⋅d⃗l   (electrostatics)

where the last two integration, having the same limits a,b are evaluated over two different
paths. This means the integration is path independent and the field is conservative. This 
implies a potential can be defined as dV =−E⃗⋅d l⃗ . The electric field does not do work
in moving a charge from a back to a.  

In the case of varying B field  we have instead

∮ E⃗⋅d⃗l =−
d ΦB

dt
≠ 0 (induced)

which implies the electric field in not conservative, it does work over a closed loop and 
there is no potential such as dV =−E⃗⋅d l⃗ .

The Sources of the Electric and Magnetic fields

The general form of Faraday Law relates a geometrical propriety of the electric field with
the change of the magnetic flux which generates it. If we considers only a point P, there 
is no circulation, no loop and no flux through it. More fundamentally Faraday Law tells 
us that an electric field is generated at P if a B field is varying in the surrounding. 

The following table summarize the possible sources of E and B we have learned so far

sources of E Q the charge d B /dt ≠ 0

sources of B I the current 

If you’re wondering why the empty cell, Maxwell gave the answer. It is in the following 
chapter on electromagnetic waves.  
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Inductance

Consider the circuit below, in which you have a battery connected in series with a resistor
and a coil (e.g., a solenoid) of N turns. From Ampere Law

                                                  I = constant

If the flux in each loop is ΦB  then the total flux is NΦB.  This total flux is proportional to 
the current in the coil (Ampere Law).

  NΦB = LI

The constant of proportionality L is called the self-inductance or simply inductance

  L =
NΦB

I
          unit = Wb/A = henry (H)

If the coil is solenoid then we can derive its inductance in terms of its geometrical 
proprieties

N (BA )= LI

N (μ0
N
l I ) A = LI

   which imply L =
μ0 N 2 A

l
(inductance of a solenoid)

Example

A solenoid has 100-turns of wire, a diameter of 2 cm, and length l = 5 cm.  What is its 
inductance?

 L =
μ0 N 2 A

l
=

(4 π x 10−7 )(100)2 π (0 . 01)2

0. 05
= 7 . 9 x 10−5 H
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Now, let’s consider a non constant current I(t). For example add a switch in the RL circuit

When the switch (S) is closed, the current through the coil starts to increase from zero to 
some final steady-state value.  This changing current produces a changing magnetic field 
and a changing magnetic flux in the coil.  According to Faraday’s law, an emf will be 
induced in the coil whose direction will oppose the change taking place.  The polarity of 
the emf (a potential difference between the two ends of the coil) will be as shown in the 
figure.  It will oppose the current that the battery is attempting to deliver to the circuit and
slow its increase to its final steady-state value.

                                             
                                           
                                                       I = increasing 

According to Fararday’s law and the above definition of L, the emf of the inductor is 
given by

        emf L =−N
dΦB

dt
=−L dI

dt

There is a emf L across the inductor only while the current is changing.  
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Solving the   RL   circuit  

Applying Kirchhoff rule at the one loop of the RL circuit

V−IR−L( dI
dt

)=0

where V is the emf provided by the battery. Solving the differential equation for I(t) 

I (t) = V
R

(1−e
− R

L
t )

The current increases exponentially in time, somewhat like the voltage across a capacitor 
as it is charged. 

After it reaches a steady state, there will be no emf L and the current is simply 

        IMAX =
V
R .

The time constant is 

Note τ for the RL circuit varies inversely with R, whereas it is proportional to R for an RC
circuit (τ = RC).

The voltage across the inductor is

       V L = −L dI (t)
dt

= V e
−R

L t
   (see the figure above)
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Example

A RL circuit consists of  solenoid L = 87.5 mH a resistor R = 250 Ω and a battery. Find 
the time for the current to reach half of its steady value after the switch is closed.

1
2

I MAX = I MAX
(1−e

R
L t) ⇒ 1

2
= (1−e

−
R
L t ) and solving for t

t = τ ln 2 = 0.243 s

Energy in a inductor 

An inductor carrying a current contains energy in the form of the magnetic field.  The 
energy can be calculated from the power delivered by the current, P = emfL I.  The work 
done in increasing the current by dI is 

   dW = Pdt = V L I dt = L dI
dt

Idt = LI dI

The total work done to increase the current to I, which is the magnetic potential energy 
stored in the inductor, is

  PEL =∫dW= 1
2 LI 2

This potential energy is the analog expression of the potential energy stored in a capacitor
(PEC = ½ CΔV 2)  due to the electric field between the plates.

Example

If the current in the inductor is of the previous example is 2 A, what is the stored energy?
 
  PE = 1

2 LI 2=1
2 (7 .9 x10−5)(2 )2=1 .58 x 10−4 J

If this inductor is de-energized through a 50-Ω resistor, what is the time constant?

   τ = L
R

=7 . 9 x10−5

50
=1 .6 x10−6 s=1 . 6 μs
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Mutual Inductance

Two coils are place next to each others. Coil 1 has N1 turns, coil 2 has N2 turns.

Coil 1 carries a current I1 which generates B1. 
If I1 is time dependent, an induce emf is present in coil 2

emf 2 =−N2
d
dt

Φ21(B1)

since Φ(B1) is proportional to I1 we can write

emf 2=−M 21

dI 1

dt

The constant of proportionality M21 is called the mutual inductance.

By equating the two expressions of  the emf2 we obtained

N 2 dΦ21(B1)=−M 21 dI1

and after integrating both sides

M 21 =
N 2Φ21

I 1
     (unit henry)

Note: M21 depend on the geometrical proprieties of the two coils.

If we repeat the argument but starting with a current I2 the coil 2 we obtain

emf 1=−M 12

dI 2

dt1

and

 M 12 =
N 1Φ12

I 2

15



Using the reciprocity theorem (based on Ampere and Biot-Savart laws) it can be shown 

M21 = M12 = M

Example

Two coils are coupled as shown in the figure, 
find the mutual inductance M

Let’s consider the inner coil to be a solenoid of cross
section A1 and for which we have B1 = μ0

N1

l
I1  

M 21 =
N 2Φ21(B1)

I I
= μ0

N 1 N2 A2

l

where A2 is the cross section of the larger coil. Since 
B1 = 0 outside the solenoid, the flux through A2 is the 
same as the flux through A1 and we can write

M 21 = μ0

N1 N 2 A1

l
.

Note how the mutual inductance depends only on the geometrical proprieties
of the system.

If we were to start by considering a variable current I2 in the outer coil we 
have 

M 12 =
N 1Φ12(B2)

I 2

where Φ12 is the flux of B2 through the inner solenoid of area A1. Now this 
flux can be quite complicated to calculate since the outer coil is not a 
solenoid and its B2 field has a complicated geometry. Nevertheless because 
of the reciprocal theorem we know that M12 = M21.
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