
Chapter 21 – Kinetic Theory of Gases 
 
This chapter examines the behavior of an ideal gas from a molecular point of view.  It 
shows how the macroscopic behavior of a gas - described in terms of pressure, volume, 
temperature - can be related to the statistical average of the microscopic motions. 
 
Assume that we have a container of an ideal gas with the following properties: 
 
• Large number of molecules with average spacing between molecules large compared 

with the size of the molecules. 
 
• Molecules obey Newton’s laws of motion. 
 
• Molecules collide elastically with each other and with the walls of the container. 
 
• Forces between molecules are short range – only important during collisions. 
 
• Container consists of only one type of gas (not a mixture). 
 
The pressure exerted by the gas on the walls of the container is a result of collisions by 
the molecules.  Consider a cubical container with dimensions d x d x d.  A molecule with 
a component of velocity in the x-direction will collide with a wall perpendicular to the x-
axis and transfer an amount of momentum to the wall given by 
   
 xmvp 2=Δ  
 
The average time between collisions with this wall is 
 
 xvdt /2=Δ  
 
The average force exerted on the wall by this collision is 
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For N molecules making collisions, the total average force is 
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where 2
xv  is the average of the square of the velocity in the x-direction.  However, 

because of the random motion 
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Thus, 
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The pressure exerted on the wall is 
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Or, 
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We compare this with the ideal gas equation, which is 
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This means that the average translational kinetic energy is related to the temperature as 
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The total translational kinetic energy in the gas is 
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From the above we can determine the root-mean-square (rms) speed of the molecules as 
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We can also write this as 
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where M is the molar mass, since M = NA m and NA kB = R. 
 
Example: 
 
What is the rms speed of nitrogen molecules at 20oC?  For N2, M = 28 g/mole = 0.028 
kg/mole. 
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What is the total translational kinetic energy in 1 mole of the gas? 
 

Jx.)K)(Kmole/J.)(mole(nRTTkNvmNE B
32 106532933181

2
3

2
3

2
3

2
1

=⋅====

 
 

Specific Heat of an Ideal Gas 
 
For gases, it is conventional to refer to the molar 
specific heat, which is the heat absorbed per mole per 
unit temperature rise.  The molar specific heat, and thus 
the heat absorbed for a given temperature rise, depends 
on whether the pressure or the volume is held constant 
as the temperature increases. 
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From the 1st law of thermodynamics, no work is done in a constant volume process.  Thus, 
 
 )volumeconstant(QU =Δ  
 
For a monatomic gas the internal energy is the total translational kinetic energy.  Then 
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For a constant pressure process, TnRVPW Δ−=Δ−=Δ .  So, 
 
 TnRQVPQWQU Δ−=Δ−=+=Δ , 
or 
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and Rcc vp +=  
 
During a constant volume process, no work is done so all the heat absorbed goes into 
increasing the internal energy and the temperature.  During a constant pressure process, 
the gas expands and reduces the internal energy by doing work.  Thus, more heat can be 
absorbed for a given temperature change.  
 
 
Specific Heat of Diatomic Gases 
 
Previously, it was shown that  
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zyx vmvmvmvm ++= , this means that the average kinetic energy is 

TkB2
1 per term or per degree of freedom.  A diatomic molecule is somewhat like two 

masses connected by a spring.  The molecule can rotate about its center of mass and the 
atoms can vibrate back and forth along the line connecting them.  Since the rotational 
inertia about an axis connecting the atoms is extremely small, there are two energy terms 
corresponding to rotation about the other two perpendicular axes (two degrees of 

freedom).  The average kinetic energy of each of these terms is TkB2
1 and the total 

average rotational energy is TkB .  
 
The vibrational energy of the mass-spring system consists of a kinetic energy and a 
potential energy term (also two degrees of freedom).  Each of these terms has an average 

of TkB2
1 and the total average vibrational energy is TkB . 

 
Because of these additional degrees of freedom, the specific heat of a diatomic molecule 
is greater than that of a monatomic molecule ( ½ R for each degree of freedom).  The 



rotational and vibrational energies of a molecule are quantized.  That is, only certain 
discrete energies are allowed.  In order to excite these rotational and vibrational levels, 
the gas must be at a sufficiently high temperature.  At low temperatures, only 
translational motions can occur.  At higher temperatures, the molecular collisions are 
sufficient to excite the rotational levels.  At still higher temperatures, the vibrational 
energy levels can be excited.  Thus, the specific heat of a diatomic molecule will increase 
with temperature, giving evidence of the quantum nature of the energies. 


