Final on MAY 042010 - Physics 105 - R. Schad

your clicker \#
name \& student number on the answer sheet, please

$1 .$	This is to identify the exam version you have - IMPORTANT Mark the A
$2 .$ 13	This is to identify the exam version you have - IMPORTANT Mark the B
3. \square	A small block with a mass of 100 g is released from a height of 5 m as shown in the figure. The block following a curved path transitions to a linear horizontal path and hits the spring fixed to a wedge. No friction is involved. The maximum compression of the spring will be 0.5 m The spring constant is: 1. $19.6 \mathrm{~N} / \mathrm{m}$ 2. $3,920 \mathrm{~N} / \mathrm{m}$ 3. $39.2 \mathrm{~N} / \mathrm{m}$ 4. $1,960 \mathrm{~N} / \mathrm{m}$ 5. none of these
E	A bowling ball of mass 2 kg rolls down the alley with speed $3 \mathrm{~m} / \mathrm{s}$. What is the kinetic energy of the bowling ball? (The moment of inertia of a sphere is $2 / 5 \mathrm{M} \mathrm{R}^{2}$) A) 9 J $K=K_{L n}+K_{R O T}$ B) 6 J C) 18 J $=\frac{1}{2} M \nu^{2}+\frac{1}{2} I \omega^{2}$ D) 3 J (E) none of these $=\frac{1}{2} M v^{2}+\frac{1}{2}\left(\frac{2}{5} M L^{2}\right) \frac{v^{2}}{R^{2}}$
	$\begin{aligned} =\frac{1}{2} M v^{2}\left[1+\frac{2}{5}\right] & =0.7 M v^{2} \\ & =12.6 \mathrm{Y} \end{aligned}$

5	A 50 gram bullet hits and embeds itself in a 950 gram wooden block that is initially standing still. After the impact the block-bullet combination moves at a speed of 5 meters/s. What was the speed of the bullet just before it hit the block? A) $\quad 70.7 \mathrm{~m} / \mathrm{s}$ B) $\quad 22.4 \mathrm{~m} / \mathrm{s}$ $m_{1} v_{1}+0=\left(m_{1}+m_{2}\right) v_{2}$ C) $95 \mathrm{~m} / \mathrm{s}$ D) $100 \mathrm{~m} / \mathrm{s}$ $v_{1}=\frac{m_{1}+m_{2}}{m_{1}} v_{2}$ E) $250 \mathrm{~m} / \mathrm{s}$ $=100 \mathrm{~m} / \mathrm{s}$
6.	An electromagnetic wave travels in vacuum at a speed of 3×10^{8} meters $/ \mathrm{sec}$. If the wave has a wavelength of 300 nm what is its frequency? One nm is 10^{-9} meter. A) $4 \times 10^{12} \mathrm{~Hz}$ B) $3.6 \times 10^{20} \mathrm{~Hz}$ C) $10^{15} \mathrm{~Hz}$ $\begin{aligned} & r=t \cdot d \\ & R=\frac{t}{R}=1 \times 10^{15} \mathrm{~Hz} \end{aligned}$ D) 360 Hz E) none of these
7.	How fast would you have to throw a snowball at a wall in order for it to have enough kinetic energy for it to melt when it hits the wall? Assume that all of the kinetic energy is transformed into heat and that all of the heat goes into the snowball. Further assume that the process takes place at $0^{\circ} \mathrm{C}$. It takes $3.33 \times 10^{5} \mathrm{~J}$ to melt one kilogram of ice. A) $12.6 \mathrm{~m} / \mathrm{s}$ B) $126 \mathrm{~m} / \mathrm{s}$ C) $\quad 40.5 \mathrm{~m} / \mathrm{s}$ (D) $816 \mathrm{~m} / \mathrm{s}$ $\begin{gathered} 1 / 2 v^{2}=m \cdot L \\ v=\sqrt{2 L} \end{gathered}$ E) none of these
8. A	The moon's nearly circular orbit around the earth has a radius of $385,000 \mathrm{~km}$ and it takes 27.3 days for the moon to orbit the earth once. What is the acceleration of the moon toward the earth? 1. $2.73 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}$ 2. $5.21 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2}$ $F=m_{m i} a=G \frac{m_{E} m_{M}}{R^{2}}$ 3. $0.417 \mathrm{~m} / \mathrm{s}^{2}$ 4. $9.8 \mathrm{~m} / \mathrm{s}^{2}$ $a=G \frac{m_{\bar{E}}}{R^{2}}$ 5. $10.52 \mathrm{~m} / \mathrm{s}^{2}$ $=2.7 \times 10^{-2} \times 2 / 5^{2}$

9.	An object undergoes un-damped simple harmonic oscillation. Which of the following statements is correct?
a. The total mechanical energy is always equally divided between kinetic energy	
and potential energy.	
The total mechanical energy of the oscillator is proportional to the amplitude of	
the oscillation.	
The restoring force of the oscillatory system is strongest when the kinetic energy	
is zero.	
The maximal value of the potential energy is larger than the maximal value of	
the kinetic energy.	

12. A	Tommy_1 and his skateboard have a combined mass of 50 kg . Tommy_2 and his skateboard total 100 kg . You push each of them with the same force F, but you push Tommy_1 for a 2 m distance and Tommy_2 for 1 m . After you finish pushing them, (a) Tommy_1 is moving faster than Tommy_2 (b) Tommy_2 is moving faster than Tommy_1 (c) They are both moving the same speed (d) There is not enough information to decide about their speeds.
13. G	Two identical containers, A and B, hold equal amounts of the same ideal gas at the same P_{o}, V_{o} and T_{o}. The pressure of A then decreases by a half while its volume doubles. The pressure of B doubles while its volume decreases by a half. Which statement correctly describes the temperatures of the gases after the changes? a. $\quad T_{\mathrm{A}}=0.5 T_{\mathrm{B}}=T_{\mathrm{o}}$. b. $T_{\mathrm{B}}=0.5 T_{\mathrm{A}}=T_{\mathrm{o}}$. 1) $P_{1}=\frac{1}{2} P_{0} ; V_{1}=2 V_{0} p \cdot V=$ c. $T_{\mathrm{B}}=T_{\mathrm{A}}=T_{0}$. d. $T_{\mathrm{A}}=2 T_{\mathrm{B}}=T_{\mathrm{o}}$. 2) $p_{2}=2 p_{6}$; $V_{2}=\frac{1}{2} V_{0} \quad p V=$ con e. $T_{\mathrm{B}}=2 T_{\mathrm{A}}=T_{\mathrm{o}}$.
14. I	A dentist's drill starts from rest. Then, with a constant angular acceleration, it turns through $100,000 \mathrm{rev}$ reaching its final angular speed within a period of 1 s . The value of this final angular acceleration is: 1. $100,000 \mathrm{rad} / \mathrm{s}^{2}$ 2. $200,000 \mathrm{rad} / \mathrm{s}^{2}$ 3. $628,000 \mathrm{rad} / \mathrm{s}^{2}$ (4.) $1,250,000 \mathrm{rad} / \mathrm{s}^{2}$ $\begin{aligned} & \theta f=\theta+d t+\frac{\alpha}{2} t^{2} \\ & a=\frac{2 \theta_{l}}{t^{2}}=\frac{2 \cdot 2 \cdot \pi \operatorname{Rev}}{t^{2}} \end{aligned}$ 5. none of these

15.	The position of a particle is given in the graph below as a function of time. At which time (interval) is the acceleration negative? 1. 3-12 sec 2. $0-8 \mathrm{sec}$ 3. 8 sec 4. 12 sec 5. never
B	The graph below shows the velocity versus time graph for a ball. Which explanation best fits the motion of the ball as shown by the graph? a. The ball is rising, hits the ceiling, and falls down. b. The ball is falling, is caught, and is thrown down with greater speed. c. The ball is rolling, stops, and then continues rolling. d. The ball is falling, hits the floor, and bounces up. e. The ball is rising, is caught, and then is allowed to fall.

E,	A graph of position versus time for an object oscillating at the free end of a horizontal spring is shown below. A point or points at which the object has zero velocity and zero acceleration is(are) a. B b. C c. D d. B or D e. never
18.	A mass $m=2.0 \mathrm{~kg}$ is attached to a spring as in the figure and oscillating with a frequency of 10 Hz . The force constant of the spring k is: a. $\quad 790 \mathrm{~N} / \mathrm{m}$ $\begin{aligned} & \omega=\sqrt{\frac{k}{m}} \quad w=2 \pi \\ & f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}} \\ & k=f^{2} \cdot(2 \pi)^{2} \cdot m \end{aligned}$ b. $\quad 1257 \mathrm{~N} / \mathrm{m}$ c. $\quad 7896 \mathrm{~N} / \mathrm{m}$ d. $\quad 15790 \mathrm{~N} / \mathrm{m}$ e. none of these
19.	3 mole of an ideal gas at a pressure of $1 \times 10^{5} \mathrm{~Pa}$ and a temperature of $25^{\circ} \mathrm{C}$ are heated to $50^{\circ} \mathrm{C}$. If the volume is held constant and the final pressure will be a. $1 \times 10^{5} \mathrm{~Pa}$ b. $2 \times 10^{5} \mathrm{~Pa}$ $\frac{P}{T}=\text { const }$ (c. $1.08 \times 10^{5} \mathrm{~Pa}$ d. $75 \times 10^{5} \mathrm{~Pa}$ $T_{i}=298 \mathrm{k}$ e. none of these $T_{f}=323 \mathrm{~K}$

Wave Wave velocity	$\begin{aligned} & y(x, t)=A \sin (k x-\omega t) \\ & k=2 \pi / \lambda \\ & \omega=2 \pi / T \\ & v=f \lambda=\omega / k \end{aligned}$
Standing wave	$y=2 A \sin (k x) \cos (\omega t)$
Density	$\rho=\mathrm{m} / \mathrm{V}$
Pressure	$\mathrm{P}=\mathrm{F} / \mathrm{A}$
Buoyant force	$\mathrm{F}_{\mathrm{b}}=\rho_{\text {fluid }} \cdot \mathrm{V}_{\text {object }} \cdot \mathrm{g}$
Law of Gravitation	$\begin{array}{ll} \mathrm{F}_{\mathrm{Gr}}=\mathrm{G}\left(\mathrm{~m}_{1} \cdot \mathrm{~m}_{2}\right) / \mathrm{r}^{2} & \mathrm{G}=6.673 \cdot 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\ \mathrm{U}_{\mathrm{Gr}}=-\mathrm{G}\left(\mathrm{~m}_{1} \cdot \mathrm{~m}_{2}\right) / \mathrm{r} & \mathrm{r} \text { measured from center } \end{array}$
Temperature	$\mathrm{T}[$ Kelvin $]=\mathrm{T}\left[{ }^{\circ} \mathrm{C}\right)+273$
Thermal Expansion	$\Delta \mathrm{L}=\alpha \mathrm{L} \Delta \mathrm{T}$
Universal gas law	$\mathrm{P} \cdot \mathrm{V}=\mathrm{n} \cdot \mathrm{R} \cdot \mathrm{T} ; \quad \mathrm{R}=8.3 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{mol})$
Heat	$\begin{aligned} & \mathrm{Q}=\mathrm{m} \cdot \mathrm{c} \cdot \Delta \mathrm{~T} \\ & \mathrm{Q}=\mathrm{m} \cdot \mathrm{~L} \end{aligned}$
$1^{\text {st }}$ Law of Thermodynamics [conservation of energy]	$\mathrm{E}_{\text {int, initial }} \forall \mathrm{W} \forall \mathrm{Q}=\mathrm{E}_{\text {int,final }}$ [for ideal gas: $\mathbf{E}_{\text {int }}$ is proportional to the temperature]
Work done on a gas: for isothermal process:	$\begin{aligned} & \mathrm{W}=\int P d V \\ & \mathrm{~W}=\mathrm{nRT} \ln \left(\mathrm{~V}_{\mathrm{i}} / \mathrm{V}_{\mathrm{f}}\right) \end{aligned}$
quadratic equation $x^{2}+p x+q=0$	$x_{1,2}=-p / 2 \pm\left(p^{2} / 4-q\right)^{1 / 2}$
Mass of the Earth	$6 \times 10^{24} \mathrm{~kg}$

