Final on MAY 04 2010 - Physics 105 – R. Schad			
YOUR NAME	17	solutions	
your clicker #			2

name & student number on the answer sheet, please

5.	A 50 gram bullet hits and embeds itself in a 950 gram wooden block that is
0	initially standing still. After the impact the block-bullet combination moves at a
\mathbf{D}	speed of 5 meters/s. What was the speed of the bullet just before it hit the
	block? $(m + 2) = (m + m - 1)$
	A) 70.7 m/s $m_1 V_1 + 0 = (m_1 + m_2) V_2$ B) 22.4 m/s
	B) 22.4 m/s C) 95 m/s $V_{1} = \frac{m_{1} + m_{2}}{2} V_{2}$
	B) 22.4 m/s C) 95 m/s D) 100 m/s E) 250 m/s $V_{i} = \frac{m_{i} + m_{2}}{m_{i}} V_{2}$ $= 100 \frac{m_{s}}{s}$
6.	An electromagnetic wave travels in vacuum at a speed of 3×10^8 meters/sec. If the wave has a wavelength of 300 nm what is its frequency?
4	One nm is 10^{-9} meter. A) 4×10^{12} Hz $V = \sqrt{-7}$
	A) $4 \times 10^{12} \text{ Hz}$
	B) $3.6 \times 10^{20} \text{ Hz}$ $= /2 = / \times 10^{15} \text{ Hz}$
	(c) 10^{15} Hz 7^{-7}
	D) 360 Hz
	E) none of these
7. D	How fast would you have to throw a snowball at a wall in order for it to have enough kinetic energy for it to melt when it hits the wall? Assume that all of the kinetic energy is transformed into heat and that all of the heat goes into the snowball. Further assume that the process takes place at 0°C. It takes 3.33×10^5 J to melt one kilogram of ice.
	$A) 126 \mathrm{m/s}$
	$\begin{array}{ccc} A) & 12.0 \text{ m/s} \\ B) & 126 \text{ m/s} \end{array} \qquad \begin{array}{c} 1 & 126 \text{ m/s} \\ 7 & 7 & 7 \\ 7 & 7 & 7 \\ 7 & 7 & 7 \\ 7 & 7 &$
	C) 40.5 m/s
	2 1/ 91
	E) none of these
8.	The moon's nearly circular orbit around the earth has a radius of 385,000 km and it takes 27.3 days for the moon to orbit the earth once. What is the acceleration of the
A	mean toward the earth?
()	(1) $2.73 \times 10^{-3} \text{ m/s}^2$ $F = M_{\text{ri}} a = G \frac{M_E M_M}{R^2}$
	2. $5.21 \times 10^{-2} \text{ m/s}^2$
	3. 0.417 m/s^2 $\mathcal{A} = 6 \frac{m_E}{R^2}$
	3. 0.417 m/s^2 4. 9.8 m/s^2 $\mathcal{A} = G \frac{m_E}{R^2}$
	4 98m/s

9.	An object undergoes un-damped simple harmonic oscillation. Which of the following statements is correct?				
G	a. The total mechanical energy is always equally divided between kinetic energy and potential energy.				
	b. The total mechanical energy of the oscillator is proportional to the amplitude of the oscillation.				
	C The restoring force of the oscillatory system is strongest when the kinetic energy is zero.				
	d. The maximal value of the potential energy is larger than the maximal value of the kinetic energy.				
10. <i>Ç</i> 11.	 You are on a merry-go-round (MGR) which spins without friction. Originally located at the perimeter, you now move closer to the center. Which of the following statements is correct about angular velocity ω, angular momentum (L) 1. ω increases, L increases 2. ω remains constant, L remains constant 3. ω increases, L remains constant 4. ω remains constant, L increases 5. none of these A mass <i>m</i> = 2.0 kg is attached to a spring as in the figure and oscillating with a frequency of 10 Hz. The total energy in the system is 50 J.				
Y	The maximum velocity during the oscillation is:				

	1	0.12
12. A	Tommy 1 and mis skateboard have a combined mass of 50 kg.	26) IW
	 Tommy_1 is moving faster than Tommy_2 Tommy_2 is moving faster than Tommy_1 They are both moving the same speed There is not enough information to decide about their speeds. 	
13. G	Two identical containers, <i>A</i> and <i>B</i> , hold equal amounts of the same ideal gas at the same P_{o} , V_{o} and T_{o} . The pressure of <i>A</i> then decreases by a half while its volume doubles. The pressure of <i>B</i> doubles while its volume decreases by a half. Which statement correctly describes the temperatures of the gases after the changes?	1
	a. $T_{A} = 0.5T_{B} = T_{o}$. b. $T_{B} = 0.5T_{A} = T_{o}$. c) $P_{I} = \frac{1}{2}P_{0}$; $V_{I} = 2V_{0}$ $p \cdot V = conf.$ c) $T_{B} = T_{A} = T_{o}$. d. $T_{A} = 2T_{B} = T_{o}$. e. $T_{B} = 2T_{A} = T_{o}$.	$rat = l_i = l_i$
14.	A dentist's drill starts from rest. Then, with a constant angular acceleration, it turns through 100,000 rev reaching its final angular speed within a period of 1 s. The value of this final angular acceleration is: 1. 100,000 rad/s ² 2. 200,000 rad/s ² 3. 628,000 rad/s ² 4. 1,250,000 rad/s ² 5. none of these	

D	(The density of water is 1.00×10^3 kg/m ³ . air pressure is 98×10^3 Pa) The value of the buoyant force at a depth of 10 m and just before reaching the surface are, respectively:			
		at a depth of 10 m	just before reaching the surface	
	a	zero	9.8 mN	
	b	9.8 mN	9.8 mN	
	С	9.8 N	9.8 N	
	d	9.8 mN	19.6 mN	
	e	none of these		
7 12. B	into the system. By which factor did the volume of the gas expand? a. volume remained constant b. factor 1.1 c) factor 2 d. factor 10 e. none of these An 100 kg aluminum flagpole, originally 50 m long, is heated by the sun receiving 6 MJ of heat. The length of the flag pole after being heated is: [The specific heat of aluminum is 900 J/kg K.] [The linear coefficient of expansion is 24x 10 ⁶]			
<u>2.</u> B	receiving The lengt [The spec	d. factor 10 e. none of these g aluminum flagpole, origin g 6 MJ of heat. th of the flag pole after being cific heat of aluminum is 900	$= nRT (n \frac{V_i}{V_l})$ ally 50 m long, is heated by the sun $(n \frac{V_l}{V_l} = \frac{Q_l}{nRT})$ g heated is:	

$$F_{3} \bigotimes supe = g_{K0} \cdot S \cdot V_{5n5, surf.} = 19.6 \text{ mM}$$

$$V_{5n5, surf} = \frac{P_{10n}}{P_{7m}} V_{10m} = \frac{[98 \times 10^{3} \times 10^{3} \times 9.8 \cdot 10] P_{a}}{98 \times 00^{3}} P_{a}$$

$$= 2 \text{ cc}$$

velocity	$\mathbf{v} = d\mathbf{x}/dt$			
acceleration $v = dx/dt$ a = dv/dt				
· · · 1 1 · · · · · · · · · · · · · · ·		3 m/s ² downwards		
$ \mathbf{a} - \mathbf{g} - \mathbf{y}_i$ Kinematics $\mathbf{v}_f = \mathbf{v}_i + \mathbf{a} \cdot \mathbf{t}$				
(1-dimensional)	$\mathbf{x}_{\mathrm{f}} = \mathbf{x}_{\mathrm{i}} + \mathbf{v}_{\mathrm{i}} \cdot \mathbf{t}$	$+ \frac{1}{2} \cdot a \cdot t^{2}$		
	$\mathbf{v}_{f}^{2} = \mathbf{v}_{i}^{2} + 2\mathbf{a} \cdot (\mathbf{x}_{f} - \mathbf{x}_{i})$			
Projectile Motion $v_{rf} = v_{ri} + 2$		$\frac{\mathbf{v}_{v_{i}} - \mathbf{v}_{v_{i}}}{\mathbf{v}_{v_{i}} - \mathbf{v}_{v_{i}} + \mathbf{a} \cdot \mathbf{t}}$		
		$\cdot t \qquad $		
$\begin{array}{c} (2-\text{dimensional}) \\ \text{Newton's Law} \end{array}$		$\mathbf{F} = \mathbf{m} \cdot \mathbf{a}$	J1 J1	
Friction		$F_{\text{friction}} =$	EN II	
Circular Motion - Radial Force		$F_{radial} = n$		
Conservation of Energy			$W_{in/out} = K_f$	$s + U_{\epsilon}$
Energy				$K_{\rm lin} = \frac{1}{2} {\rm mv}^2$
LinerBy				$K_{\rm rot} = \frac{1}{2} I \omega^2$
				$U_g = m g h$
				$U_{Gr} = -G(m_1 \cdot m_2) / r$
		Potential (spring): $U_s = \frac{1}{2} k x^2$		
Work			the second s	5
		$W = \int \vec{F} d\vec{x}$		
Power		P = W/t = E/t		
momentum		$\mathbf{p} = \mathbf{m} \mathbf{v}$		
conservation of momentum		$\mathbf{p}_{1i} + \mathbf{p}_{2i} = \mathbf{p}_{1f} + \mathbf{p}_{2f}$		
impulse (change of momentum)		$\Delta \mathbf{p} = \int \vec{F} dt$		
Radial Force		$F_{radial} = mv^2/r = \omega^2 r$		
Frequency, Period		$f = revolutions/s = 1/T = \omega/2\pi$		
Angle in radians		2π rad = $360^\circ = 1$ revolution		
Hooke's Law (spring force)		$F_{\text{spring}} = -k x$		
oscillation		$x = A \cos(\omega t + \phi)$		
		$v = -A\omega \sin(\omega t + \phi)$		
			$2\cos(\omega t + \phi)$)
Oscillation frequency sp	oring	$f = \frac{1}{2\pi},$	$\sqrt{k/m}$	
ре	endulum	$f = \frac{1}{2\pi},$ $f = \frac{1}{2\pi},$	$\sqrt{g/L}$	

Wave	$y(x,t) = A \sin(kx - \omega t)$		
	$k = 2\pi / \lambda$		
	$\omega = 2\pi / T$		
Wave velocity	$v = f \lambda = \omega / k$		
Standing wave	$y = 2A \sin(kx) \cos(\omega t)$		
Density	$\rho = m/V$		
Pressure	P = F / A		
Buoyant force	$F_{b} = \rho_{fluid} \cdot V_{object} \cdot g$		
Law of Gravitation	$F_{Gr} = G(m_1 \cdot m_2) / r^2$ $G = 6.673 \cdot 10^{-11} \text{ Nm}^2/\text{kg}^2$		
	$U_{Gr} = -G(m_1 \cdot m_2) / r$ r measured from center		
Temperature	$T [Kelvin] = T [^{\circ}C) + 273$		
Thermal Expansion	$\Delta L = \alpha L \Delta T$		
Universal gas law	$P \cdot V = n \cdot R \cdot T;$ $R = 8.3 J/(K \cdot mol)$		
Heat	$Q = m \cdot c \cdot \Delta T$		
	$Q = m \cdot L$		
1 st Law of Thermodynamics	$E_{int,initial} \forall W \forall Q = E_{int,final}$		
[conservation of energy]	[for ideal gas: E _{int} is proportional to the temperature]		
Work done on a gas:	$W = \int P dV$		
for isothermal process:	$W = nRT \ln(V_i/V_f)$		
quadratic equation	$x_{1,2} = -p/2 \pm (p^2/4 - q)^{1/2}$		
$x^2 + px + q = 0$			
Mass of the Earth	$6 \ge 10^{24} \text{ kg}$		