Exam 1 on FEB 09. 2010 - Physics 105 - R. Schad

5. | A race car accelerated from rest. |
| :--- |
| When was the velocity of the car $7.5 \mathrm{~m} / \mathrm{s}$? |
| 1 |

11. θ	A projectile is fired from ground with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$ at an angle of 30° above ground. Finally, it hits a wall which is a horizontal distance of 20 m away. At which height above ground does it hit the wall? (A.) $5 . \mathrm{m}$ B. $\quad 18 \mathrm{~m}$ C. $\quad 0.40 \mathrm{~m}$ D. $\quad 3.83 \mathrm{~m}$ E. none of the above
$\stackrel{12}{3}$	A ball is thrown straight up with a speed of $10 \mathrm{~m} / \mathrm{s}$ from the edge of a 50 m tall building so that it hits the ground below. What is the speed of the ball just before it hits the ground? a) $21.3 \mathrm{~m} / \mathrm{s}$ (b) $32.9 \mathrm{~m} / \mathrm{s}$ c) $41.3 \mathrm{~m} / \mathrm{s}$ d) $10 \mathrm{~m} / \mathrm{s}$ e) none of these

13. | The position of a particle is given in the graph below as a function of time. |
| :--- |
| Over what time interval is the acceleration positive? |

a) $0-3.5 \mathrm{sec}$
b) $3.5-6.5 \mathrm{sec}$
(c) $6.5-8.5 \mathrm{sec}$
d) $9-10 \mathrm{sec}$
e) none of these

$14 .$| Two balls are thrown vertically upwards. |
| :--- |
| The first ball is thrown with an initial speed of $10 \mathrm{~m} / \mathrm{s}$. |
| The second ball reaches twice the height of the first ball. |
| With which initial speed was the second ball thrown? |
| a) $10.0 \mathrm{~m} / \mathrm{s}$ |
| b) $14.1 \mathrm{~m} / \mathrm{s}$ |
| c) $20.0 \mathrm{~m} / \mathrm{s}$ |
| d) $40 \mathrm{~m} / \mathrm{s}$ |
| e) None of these |

ith which initial speed was the second ball thrown?
a) $10.0 \mathrm{~m} / \mathrm{s}$
b) $14.1 \mathrm{~m} / \mathrm{s}$
c) $20.0 \mathrm{~m} / \mathrm{s}$
d) $40 \mathrm{~m} / \mathrm{s}$
e) None of these

$$
\begin{aligned}
V_{f}^{2} & =V_{i}^{2}+2 a(1 y) \\
0 & =V_{i}^{2}+2(-g)=y \\
& \times(\sqrt{2})^{2}+\text { same } x 2
\end{aligned}
$$

15.	Two balls are thrown vertically upwards. The first ball is thrown with an initial speed of $10 \mathrm{~m} / \mathrm{s}$. The second ball needs twice as long before it hits ground. With which initial speed was the second ball thrown? a) $5 \mathrm{~m} / \mathrm{s}$ b) $10 \mathrm{~m} / \mathrm{s}$ c) $14.1 \mathrm{~m} / \mathrm{s}$ d) $20 \mathrm{~m} / \mathrm{s}$ e) None of these
	Two balls are thrown off a building, the first vertically upwards, the second horizontally. Both have the same initial speed. Which ball hits ground first? a) The ball that was thrown vertically b) The ball that was thrown horizontally c) Both hit ground simultaneously d) [Both stay in air forever] e) None of these
$\begin{array}{r} 17 \\ 3 \end{array}$	Janet jumps off a diving platform with an initial speed of $2 \mathrm{~m} / \mathrm{s}$ and lands in the water 1 s later. The platform is 4 m high. The acceleration of gravity is $10 \mathrm{~m} / \mathrm{s}^{2}$. At which angle with respect to the horizontal did she jump of the platform? a) Just horizontal b) 30 deg above the horizontal c) 45 deg above the horizontal d) 45 deg below the horizontal e) None of these
	find a component of $\stackrel{\rightharpoonup}{v}_{i}$ $\begin{aligned} & x_{i}^{\prime}=y_{i}+v_{y i} t+\frac{a}{2} t^{2} \\ & v_{y i}=\frac{-y_{i}+\frac{g}{2} t^{2}}{t}= \end{aligned}$ (a) $1 m^{2 n / 3} \quad \sin x=\frac{1}{2}$

An object moves in the positive x-direction, first quickly, then gradually slower,
finally speeding up again.
which graph below correctly represents position versus time for this object?
22.

