CAPACITORS EXPERIMENT

Short description:
In this experiment you will determine how voltages are distributed in capacitor circuits and explore series and parallel combinations of capacitors.

Equipment:
- AC power supply (set to 10V)
- Three 0.1 µF capacitors, one 0.01 µF capacitor, one unknown capacitor
- Multimeter
- 4 cables

Theory:
Capacitors are electronic devices which have fixed values of capacitance and negligible resistance. The capacitance \(C \) is the charge stored in the device, \(Q \), divided by the voltage difference across the device, \(\Delta V \):

\[
C = \frac{Q}{\Delta V}
\]

(1)

The schematic symbol of a capacitor is has two vertical (or horizontal) lines a small distance apart (representing the capacitor plates) connected to two lines representing the connecting wires or leads).

\[\]

There are two ways to connect capacitors in an electronic circuit - series or parallel connection.

Series:
In a series connection the components are connected at a single point, end to end as shown below:

\[C_1 \quad \bullet \quad C_2 \]

For a series connection, the charge on each capacitor will be the same and the voltage drops will add. We can find the equivalent capacitance, \(C_{eq} \), from

\[
Q \cdot \frac{1}{C_{eq}} = \Delta V = \Delta V_1 + \Delta V_2 = \frac{Q}{C_1} + \frac{Q}{C_2} = Q \left[\frac{1}{C_1} + \frac{1}{C_2} \right]
\]

(2)

\[
\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}
\]

(3)
Parallel:
In the parallel connection, the components are connected together at both ends as shown below:

\[
\begin{align*}
\text{For a parallel connection, the voltage drops will be the same, but the charges will add. Then the} \\
equivalent capacitance can be calculated by adding the charges: \\
C_{eq} \Delta V &= Q = Q_1 + Q_2 = C_1 \Delta V + C_2 \Delta V = [C_1 + C_2] \Delta V \quad (5) \\
C_{eq} &= C_1 + C_2 \quad (6)
\end{align*}
\]

Procedure:

1. Turn on the power supply and set the AC voltage to 10 V. Measure the actual power supply voltage with the multimeter and record it below:

\[V_{PS} = \text{_______________________V}\]
2. Connect two 0.1 µF capacitors in **series**. Measure \(V_2 \) (across \(C_2 \)) and record it below.

\[
V_2 \text{ (measured)} = \underline{\underline{\underline{\underline{}}} \text{ V}}
\]

3. Compute the expected value of \(V_2 \) using \(V_{PS} \), the values of \(C_1 \) and \(C_2 \) with equations 1 and 3. Remember that Eq. 1 is true for each capacitor, including the combined \(C_{12} \).

\[
V_2 \text{ (expected)} = \underline{\underline{\underline{\underline{}}} \text{ V}}
\]

\[\% \text{ difference} = \frac{|\text{measured} - \text{expected}|}{\text{measured}} \times 100 \% = \underline{\underline{\underline{\underline{}}}} \]

4. Connect a third 0.1 µF capacitor in **parallel** with \(C_2 \). Compute their equivalent capacitance \(C_{23} \).

\[
C_{23} = \underline{\underline{\underline{\underline{}}} \text{ µF}}.
\]

Measure and compute the voltage across \(C_2 \). [Hint: is this the same as the voltage across the equivalent capacitor \(C_{23} \)? You may want to compute the total equivalent capacitance seen by the power supply, \(C_{123} \)]

\[
V_2 \text{ (measured)} = \underline{\underline{\underline{\underline{}}} \text{ V}},
\]

\[
V_2 \text{ (expected)} = \underline{\underline{\underline{\underline{}}} \text{ V}},
\]

\[\% \text{ difference} = \underline{\underline{\underline{\underline{}}}} \]

5. Now remove the third capacitor \(C_3 \) and replace it with a 0.01 µF capacitor. Compute their equivalent capacitance \(C_{23} \).

\[
C_{23} = \underline{\underline{\underline{\underline{}}} \text{ µF}}.
\]

Measure and compute the voltage across \(C_2 \)

\[
V_2 \text{ (measured)} = \underline{\underline{\underline{\underline{}}} \text{ V}},
\]

\[
V_2 \text{ (expected)} = \underline{\underline{\underline{\underline{}}} \text{ V}},
\]

\[\% \text{ difference} = \underline{\underline{\underline{\underline{}}} \text{ %}} \]
6. Now connect the 0.1 µF and the 0.01 µF capacitor in **series**, as C₂ and C₃. Compute the equivalent capacitance C₂₃

\[C_{23} = \text{________} \mu\text{F}. \]

Measure and compute the voltage across the equivalent capacitance C₂₃.

\[V_{23} \text{ (measured)} = \text{______} \text{ V}, \]

\[V_{23} \text{ (expected)} = \text{______} \text{ V}, \]

\[\% \text{ difference} \quad = \text{______} \]

7. This method can be used to find an unknown capacitance. Replace C₂ with the unknown value capacitor and determine its capacitance by measuring V₂ and using equations 1 and 3.

\[V_2 = \text{______} \text{ V}, \]

\[C_2 = \text{______} \mu\text{F}. \]