SHOW all your works. Put the answers in a BOX NAME:
1 Given the following components of the four-vector A :

$$
A^{\mu}=(-2,3,1,-1)
$$

Compute its components A^{μ} after the Lorentz boost $v_{x}=0.91 c$
2 Write how the following tensorial quantities transform after a Lorentz transformation. Use the appropriate Lorentz Λ matrix for each index.

$$
\begin{array}{r}
A_{\mu} ; A^{\mu} \\
B^{\mu \nu} ; B_{\mu \nu} \\
C^{\mu}{ }_{\nu} \\
D^{\mu \nu}{ }_{\rho} \\
E^{\mu} D_{\mu} \\
E^{\mu} D^{\mu} \\
F^{\mu} G_{\mu} H^{\rho}
\end{array}
$$

3 Given the tensors $U^{\mu}=\left(\gamma c, \gamma v^{i}\right), U_{\mu}=\left(\gamma c,-\gamma v^{i}\right)$. Calculate:

$$
\begin{gathered}
U^{\mu} U_{\mu} \\
U^{\prime \mu} U_{\mu}^{\prime} \\
U^{\mu} U^{\mu}
\end{gathered}
$$

4 Use the Lorentz transformations to derive the expressions of length contraction and time dilation.
5 Perform the explicit matrix multiplications of the component of the Lorentz matrix with its inverse to prove that $\Lambda^{-1} \Lambda=\mathbb{1}_{4 \times 4}$

6 Write down explicitly all the terms in the sums of the 2 D expression $A^{2}{ }_{1}=B^{2}{ }_{\alpha} C_{1}{ }^{\beta} D^{\alpha}{ }_{\beta}$

