SHOW all your works. Put the answers in a BOX \qquad

1 Given the following components of the two Lorentz vectors A and B :

$$
A^{\mu}=(-2,0,0,1) \quad B^{\mu}=(5,0,3,4)
$$

1.1 Compute $A-5 B$
1.2 Compute $A B$
1.3 Calculate the norm squared of A and of B and specify if it is timelike, lightlike or spacelike.

2 Prove that $\left(\Lambda^{\mu}{ }_{\nu}\right)^{-1}=\Lambda_{\nu}{ }^{\mu}$ by performing the explicit calculations of the components of the Lorentz matrix.

3 Find the length of the curve

$$
x(\kappa)=2 \kappa \quad y(\kappa)=-\kappa^{3} \quad 0<\kappa<1 / 2
$$

on a two dimensional space with metric

$$
g_{i j}=\left(\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right)
$$

You can use software to evaluate the integration.
4 Given the tensor A with components

$$
A_{j}^{i}=\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right)
$$

Find the components of $A^{\prime i}{ }_{j}$ resulting of a rotation of 50 degrees of the Euclidean x, y axis.
5 Given the two-dimensional Minkowski metric

$$
\eta_{i j}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Find four two-tensors $A^{\mu}, B^{\mu}, C^{\mu}, D^{\mu}$ such that each one is lightlike, has all components non-zero and points in a unique direction. Draw the tensors on a spacetime diagram.

6 Given the tensor A^{i} and the metric $g_{i j}$ below, find A_{i}.

$$
A^{i}=(-2,3) \quad g_{i j}=\left(\begin{array}{cc}
-1 & 2 \\
2 & 1
\end{array}\right)
$$

7 Show that the spacial component η_{11} of the metric tensor is invariant under a Lorentz transformation.
8 Calculate the trace of $A_{i j}, B^{i j}, C_{j}^{i}$ with respect to the metric $\eta_{i j}$.

$$
A_{i j}=\left(\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right) \quad B^{i j}=\left(\begin{array}{cc}
1 & 3 \\
-1 & 2
\end{array}\right) \quad C^{i}{ }_{j}=\left(\begin{array}{cc}
-1 & 0 \\
-1 & 3
\end{array}\right) \quad \eta_{i j}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

