SHOW all your works. Put the answers in a BOX
NAME:

1 The equations of motion of a point particle is:

$$
\begin{aligned}
x^{0}(\tau) & =\alpha(\tau-1) \\
x^{1}(\tau) & =\beta \tau^{2}
\end{aligned}
$$

find the value of τ, in terms of α and β, which corresponds to $v=c$.
2 Show that $\gamma m v^{2}+\gamma^{-1} m c^{2}=\gamma m c^{2}$.
3 A particle moves along the x -axis with 3 -velocity (in natural units $c=1$):

$$
\frac{d x}{d t}=\frac{k t}{\sqrt{1+k^{2} t^{2}}} \quad k=\text { constant }
$$

3.1 Calculate the components of the four velocity.
3.2 Give the expression $\tau(t)$ of the proper time elapsed from $t_{i}=0$ to $t_{f}=t$:
3.3 Does the particle 3 -speed ever exceed the speed of light?

4 An electron is moving with kinetic energy of 1.264 MeV . What is its speed? (unit of c)
5 A particle has relativistic momentum $817 \mathrm{MeV} / \mathrm{c}$ and energy of 1125 MeV for observer O.
5.1 What is its rest energy for O ? (MeV)
5.2 Observer O^{\prime} in a different frame measures the momentum of the same particle to be $953 \mathrm{Mev} / \mathrm{c}$. What is the corresponding energy of the particle for $O^{\prime} ?(\mathrm{MeV})$

6 Electrons are accelerated to high speed by a two stages machine. The first stage accelerates the electron from rest to 0.99 c. The second from $0.99 c$ to $0.999 c$.
6.1 How much energy is needed to accelerate the electron in the first stage? (MeV)
6.2 for the second? (MeV)
6.3 for the electron to reach the speed c ?

7 A meson (rest mass 135 MeV) moves at speed $v=\frac{c}{\sqrt{2}}$ in a direction at 45° to the x-axis. Work in natural units
7.1 Find the components of the four velocity.
7.2 Find the components of the four momentum.

8 A particle of mass M decays at rest into two particles of same mass m. Find the speed of each particle (as a function of c, M, m).

9 Observer O measures a particle of mass m moving in the x direction to have speed $v=0.67 c$, energy $E=1418 \mathrm{MeV}$ and momentum $p=950 \mathrm{MeV} / \mathrm{c}$. For an observer O^{\prime}, moving at speed $v_{T}=.15 \mathrm{c}$ in the x direction, find:
9.1 E^{\prime} the energy of the particle as measured by O^{\prime}.
$9.2 p^{\prime}$ the momentum of the particle as measured by O^{\prime}.

