SHOW all your works. Put the answers in a BOX
NAME:
1 Give the electromagnetic field tensor $F^{\mu \nu}$ and four current J^{μ} show explicitly that $\partial_{\mu} F^{\mu \nu}=\frac{4 \pi}{c} J^{\nu}$ corresponds to the Gauss Law $\nabla \cdot E=\frac{\rho}{\varepsilon_{0}}$ and the Ampere Law $\nabla \times B=\mu_{0} J+\mu \varepsilon_{0} \frac{\partial E}{\partial t}$.

2 Give the electromagnetic field tensor $F^{\mu \nu}$ show explicitly that $\partial_{[\mu} F^{\nu \rho]}=0$ corresponds to the Gauss Law $\nabla \cdot B=0$ and the Faraday Law $\nabla \times E=-\frac{\partial B}{\partial t}$.

3 Given $F^{\mu \nu}$, find its component F^{10} after a Lorentz boost $v_{x}=.85 c$
4 Prove that $\partial_{[\mu} F_{\nu \rho]}=0$ is satisfied identically when using $F_{\mu \nu}$ expressed in terms of the four vector potential A^{μ}.

5 Given the electromagnetic field tensor $F^{\mu \nu}$ and the four velocity u^{μ}.
5.1 show explicitly that $F^{\mu}=q F^{\mu}{ }_{\nu} u^{\nu}$ corresponds to the Lorentz force $\vec{F}=q \vec{E}+q \vec{v} \times \vec{B}$ for the case of small speed $(v \ll c)$.
5.2 show what the time component $\mu=0$ of $F^{\mu}=q F^{\mu}{ }_{\nu} u^{\nu}$ corresponds to.

