PH482 - HW6 - Tensors

1 Given the scalar field $\phi(x, y) = x^2 - 2y$, and the change of coordinates: $x' = \frac{1}{3}(x-1), y' = 2y - x$, find:

1.1 the expression of $\phi'(x', y')$.

1.2 show that $\phi(x, y) = \phi'(x', y')$ point-wise, for example at (x, y) = (2, 1).

2 Given the tensor

$$A^i = (-y, 2, 3x,)$$

and the change of coordinates: $x' = xz, y' = y^2 - 2x, z' = -x^2y + z$, find A^i in the new coordinates system.

3 Given the tensor:

$$A_{ij} = \left(\begin{array}{cc} 1 & 0\\ 0 & x^2 \end{array}\right)$$

and the change of coordinates: $x' = \frac{2x}{y}, y' = \frac{y}{2}$, find A'_{ij} in the new coordinates system.

4 The components of the metric tensor are:

$$g_{ij} = \left(\begin{array}{ccc} y & 3x & 0\\ 3x & z^2 & 1\\ 0 & 1 & 2 \end{array}\right)$$

Find the norm squared of the vector field with components $A^i = (z^2, x, -1)$ at the point P = (1, 0, -2).

5 Given the Euclidean metric δ_{ij} in Cartesian coordinates (x, y), find its expression in the polar coordinates (r, θ) . Use the indices sum. Show your step by step calculations.

6 Given the tensor A^{μ} prove that its partial derivative $\partial_{\mu}A^{\nu}$ is not a tensor.

7 Calculate the four-divergence $\partial^{\mu}\partial_{\mu}\phi(x^{\mu})$ of the scalar field $\phi(x^{\mu}) = 2tx^3 - yz^2 + 3txy^2$ (c = 1). The metric is:

$$g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & -4 \end{pmatrix}$$