SHOW all your works. Put the answers in a BOX NAME:
1 Given the scalar field $\phi(x, y)=x^{2}-2 y$, and the change of coordinates: $x^{\prime}=\frac{1}{3}(x-1), y^{\prime}=2 y-x$, find:
1.1 the expression of $\phi^{\prime}\left(x^{\prime}, y^{\prime}\right)$.
1.2 show that $\phi(x, y)=\phi^{\prime}\left(x^{\prime}, y^{\prime}\right)$ point-wise, for example at $(x, y)=(2,1)$.

2 Given the tensor

$$
A^{i}=(-y, 2,3 x,)
$$

and the change of coordinates: $x^{\prime}=x z, y^{\prime}=y^{2}-2 x, z^{\prime}=-x^{2} y+z$, find A^{i} in the new coordinates system.
3 Given the tensor:

$$
A_{i j}=\left(\begin{array}{cc}
1 & 0 \\
0 & x^{2}
\end{array}\right)
$$

and the change of coordinates: $x^{\prime}=\frac{2 x}{y}, y^{\prime}=\frac{y}{2}$, find $A_{i j}^{\prime}$ in the new coordinates system.
4 The components of the metric tensor are:

$$
g_{i j}=\left(\begin{array}{ccc}
y & 3 x & 0 \\
3 x & z^{2} & 1 \\
0 & 1 & 2
\end{array}\right)
$$

Find the norm squared of the vector field with components $A^{i}=\left(z^{2}, x,-1\right)$ at the point $P=(1,0,-2)$.
5 Given the Euclidean metric $\delta_{i j}$ in Cartesian coordinates (x, y), find its expression in the polar coordinates (r, θ). Use the indices sum. Show your step by step calculations.

6 Given the tensor A^{μ} prove that its partial derivative $\partial_{\mu} A^{\nu}$ is not a tensor.
7 Calculate the four-divergence $\partial^{\mu} \partial_{\mu} \phi\left(x^{\mu}\right)$ of the scalar field $\phi\left(x^{\mu}\right)=2 t x^{3}-y z^{2}+3 t x y^{2}(c=1)$. The metric is:

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & -4
\end{array}\right)
$$

