1 Given the curve $c(\lambda)=\left(2 \lambda, 1, \lambda^{2}-3 \lambda\right)$ on a 3 D manifold
1.1 find the corresponding tangent vector A at point $P(\lambda=0)$.
1.2 given the function $f=\left(x^{2}+y^{2}+z^{2}\right)$, evaluate $A(f)$ at $\lambda=0.25$.

2 The metric on \mathbb{R}^{2} expressed in polar coordinate is

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}
$$

Derive the non zero components of the connection $\Gamma^{i}{ }_{j k}$.

3 The metric on the unit two-sphere S^{2} expressed in spherical coordinate is

$$
d s^{2}=d \theta^{2}+\sin ^{2}(\theta) d \phi^{2}
$$

Derive the non zero components of the connection $\Gamma^{i}{ }_{j k}$.
4 The tangent vector A on the unit sphere S^{2} has components $A^{\theta}=\sin (\theta), A^{\varphi}=\sin ^{2}(\theta)$. Calculate all four components of its covariant derivative.

5 Show that the equator $\left(\theta=\frac{\pi}{2}\right)$ and that any meridian $(\varphi=$ constant $)$ are the geodesics of S^{2}.
6 For a 2D manifold with coordinates $x^{i}=(x, y)$, the nonzero coefficients of connection are given by $\Gamma^{1}{ }_{12}=\Gamma^{1}{ }_{21}=2, \Gamma^{2}{ }_{11}=3(y-1), \Gamma^{2}{ }_{22}=3 x$. A tangent vector A with components $A^{i}=(3,-2)$ at $\lambda=0$ is parallel transported to $\lambda=0.8$ along the curve $x(\lambda)=\lambda^{2}-1, y(\lambda)=\frac{1}{3} \lambda+1$. Find the new components of A.

7 The metric on the two-sphere S^{2} of radius R in spherical coordinate is

$$
d s^{2}=R^{2} d \theta^{2}+R^{2} \sin ^{2} \theta d \phi^{2}
$$

Use the metric above to prove that the area of half surface of the sphere is $2 \pi R^{2}$.

