1 Which of the following 2D Manifolds has non-zero intrinsic curvature?
Torus, Sphere, Cylinder, Mobius strip, Klein bottle, Two-holed torus, Hyperbolic plane.
2 The only independent non-zero component of the Riemann tensor of $S^{2}$ is $R_{\theta \phi \theta \phi}=a^{2} \sin ^{2} \theta$ where $a$ is the radius of $S^{2}$ which is fixed. Starting from the Riemann tensor derive $R=\frac{2}{a^{2}}$.

3 The metric oh the hyperbolic plane in polar coordinates is:

$$
d s^{2}=a^{2} d \kappa^{2}+a^{2} \sinh ^{2} k d \phi^{2}
$$

where $\kappa$ is a parameter $-\infty<\kappa<\infty$ and $a$ is fixed. The non-zero elements of the connections are:

$$
\Gamma_{\phi \phi}^{\kappa}=-\cosh \kappa \sinh \kappa \quad \Gamma_{\kappa \phi}^{\phi}=\operatorname{coth} \kappa
$$

3.1 Calculate $R_{\phi \kappa \phi}{ }^{\kappa}$. All others components of the Riemann tensor are zero.
3.2 Show that the Ricci scalar is $R=-\frac{2}{a^{2}}$.

4 Use the symmetry of the Riemann tensor $R_{\mu \nu \rho \sigma}=R_{\rho \sigma \mu \nu}$ to prove that the Ricci tensor is symmetric.
5 A cylinder of radius $a$ is embedded in $\mathbb{R}^{3}$.
5.1 Derive the metric of the cylinder expressed in cylindrical coordinate starting from the Euclidean metric in $\mathbb{R}^{3}$.
5.2 Show the curvature of the cylinder is zero.

6 The following tensorial equations holds in special relativity. Write the corresponding equations in the presence of gravity. The quantity $\alpha$ is constant, $\phi\left(x^{\mu}\right)$ and $\psi\left(x^{\mu}\right)$ are scalar functions.

$$
\begin{aligned}
\alpha \partial_{\mu} B^{\mu \nu} & =\eta_{\rho \sigma} C^{\rho \sigma \nu} \\
\phi(x) C_{\mu \nu} B^{\nu} & =\alpha \partial_{\mu} \psi(x) \\
\phi(x) \partial^{\mu} \partial_{\mu} A^{\nu} & =\psi(x) \eta^{\nu \rho} K_{\rho}
\end{aligned}
$$

