PH482 - HW9 - Black Hole

SHOW all your works. Put the answers in a BOX
NAME:
1 Show that if $T_{\mu \nu}=0$ the Einstein equation reduces to $R_{\mu \nu}=0$.
2 The mass density of Earth is $\rho_{E}=5515 \mathrm{~kg} / \mathrm{m}^{3}$.
2.1 Calculate the Schwarzschild radius for the Earth (m).
2.2 What minimal value should ρ_{E} be for the Earth to form a black hole? $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$?

3 An observer at infinity sees a pulse of light moving radially with speed $0.8 c$ near a Schwarzschild black hole of mass $M=M_{S U N}$.
3.1 What is the value of the radial coordinate of pulse?
3.2 What is the physical distance between the pulse and the event horizon?

4 Alice is in free fall toward a black hole. What gravitational effects does she observe as she crosses the event horizon of the black hole? Explain your answer in a few words.
A - very high speed.
B - dilation of the time intervals measured by her clock.
C - contraction of the time intervals measured by her clock.
D - very strong gravitational field.
E-none.

5 If the Sun turns into a black hole (with same original mass of the Sun) which gravitational effect will cause to the Earth's orbit? Explain your answer in a few words.
A - the Earth would fly off the tangent.
B - the Earth would spiral inward toward the Sun.
C - the Earth would move radially toward the Sun.
D - the Earth would be teared apart by the strong gravitational field.
E - none, the Earth would keep its original orbit.
6 Consider the coordinate system (u, v, θ, ϕ) where $u=t-r_{*}, v=t+r_{*}$ and $r_{*}=r+r_{S W} \ln \left(r / r_{S W}-1\right)$. Prove that in this coordinate system the Schwarzschild metric is

$$
d s^{2}=\left(1-\frac{r_{S W}}{r}\right) d u d v-r^{2} d \Omega^{2}
$$

Hint: start by calculating the differential $d r_{*}, d u, d v$.
7 Alice is at rest nearby a Schwarzschild black hole and sends a light pulse every 5 seconds radially to Bob who stays at infinity. Bob receives the pulses every 10 seconds. Where is Alice? (unit of $r_{S W}$).

8 Alice is at rest at $r_{A}=2 r_{S W}$ from a Schwarzschild black hole and sends a light signal to Bob every 9 seconds. Bob is also at rest, at r_{B}, and receives that signals every 11 seconds. What is r_{B} ? (unit of $r_{S W}$).

9 From energy considerations it can be shown that for an object starting at rest which moves radially in free fall toward a Schwarzschild black hole

$$
\left(1-\frac{r_{S W}}{r}\right) \frac{d t}{d \tau}=1
$$

If the object starts from the position $r=4 r_{S W}$ and the black hole has mass $M=3 M_{S u n}$, calculate how long it takes for the object to reach the singularity. Hint: express $d \tau$ as $f(r) d r$.

